Trigonometry


  1. A vertical pole AB is standing at the centre B of a square PQRS.If PR subtends an angle of 90° at the top, A of the pole, then the angle subtended by a side of the square at A is :









  1. View Hint View Answer Discuss in Forum


    PA = PR
    ∠APB = ∠ARB = 45°
    If PR = √2x :

    PB =
    x
    2

    From triangle APB ,
    tan45° =
    AB
    ⇒ AB = PB =
    x
    PB2

    ∴ PA = √( x2 / 2 ) + ( x2 / 2 ) = √x2 = x
    ∴ QA = PQ = PA = x
    ∴ ∠PAQ = 60°

    Correct Option: C


    PA = PR
    ∠APB = ∠ARB = 45°
    If PR = √2x :

    PB =
    x
    2

    From triangle APB ,
    tan45° =
    AB
    ⇒ AB = PB =
    x
    PB2

    ∴ PA = √( x2 / 2 ) + ( x2 / 2 ) = √x2 = x
    ∴ QA = PQ = PA = x
    ∴ ∠PAQ = 60°


  1. For how many integral values of ‘x’, sin φ =
    ( 3x - 2)
    , where
    0° ⋜ φ ⋜ 90°
    4










  1. View Hint View Answer Discuss in Forum

    0° ⋜ φ ⋜ 90°
    ∴ 0 ⋜ sin φ ⋜ 1

    ∵ sin φ =
    3x - 2
    4

    When , x = 1 , sin φ =
    1
    4

    When , x = 2 , sin φ =
    4
    = 1
    4

    Correct Option: A

    0° ⋜ φ ⋜ 90°
    ∴ 0 ⋜ sin φ ⋜ 1

    ∵ sin φ =
    3x - 2
    4

    When , x = 1 , sin φ =
    1
    4

    When , x = 2 , sin φ =
    4
    = 1
    4



  1. Find the value of cot
    π
    - tan
    π
    - 2tan
    π
    323216










  1. View Hint View Answer Discuss in Forum

    cot
    π
    - tan
    π
    - 2tan
    π
    323216

    =
    cos(π / 32)
    -
    sin(π / 32)
    - 2tan
    π
    sin(π / 32)cos(π / 32)16

    =
    cos2(π / 32) - sin2(π / 32)
    - 2tan
    π
    sin(π / 32) × cos(π / 32)16

    =
    2cos(π / 16)
    - 2tan
    π
    2sin(π / 32).cos(π / 32)16

    { ∴ cos2θ - sin2θ = cos2θ }
    =
    2cos(π / 16)
    - 2tan
    π
    sin(π / 16)16

    {∴ sin 2θ = 2sinθ . cosθ }
    = 2
    cos(π / 16)
    -
    sin( π/ 16 )
    sin(π / 16)cos(π / 16)

    = 2
    cos2(π / 16) - sin2( π/ 16 )
    sin(π / 16) . cos(π / 16)

    =
    4cos(π / 8)
    = 4cot
    π
    sin(π / 8)8

    Correct Option: A

    cot
    π
    - tan
    π
    - 2tan
    π
    323216

    =
    cos(π / 32)
    -
    sin(π / 32)
    - 2tan
    π
    sin(π / 32)cos(π / 32)16

    =
    cos2(π / 32) - sin2(π / 32)
    - 2tan
    π
    sin(π / 32) × cos(π / 32)16

    =
    2cos(π / 16)
    - 2tan
    π
    2sin(π / 32).cos(π / 32)16

    { ∴ cos2θ - sin2θ = cos2θ }
    =
    2cos(π / 16)
    - 2tan
    π
    sin(π / 16)16

    {∴ sin 2θ = 2sinθ . cosθ }
    = 2
    cos(π / 16)
    -
    sin( π/ 16 )
    sin(π / 16)cos(π / 16)

    = 2
    cos2(π / 16) - sin2( π/ 16 )
    sin(π / 16) . cos(π / 16)

    =
    4cos(π / 8)
    = 4cot
    π
    sin(π / 8)8


  1. If sin θ = a cos φ and cos θ = b sin φ , then the value of (a2 – 1) cot2 φ + (1 – b2 ) cot2θ is equal to :









  1. View Hint View Answer Discuss in Forum

    (a2 - 1)cot2φ + ( 1 - b2 )cot2 θ

    = (a2 - 1)
    cos2φ
    + ( 1 - b2 )
    cos2θ
    sin2φsin2θ

    =
    (a2 - 1)cos2φ.sin2θ + ( 1 - b2 )cos2θ.sin2φ
    sin2φ.sin2θ

    =
    a2cos2φ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - b2cos2θ.sin2φ
    sin2φ.sin2θ

    =
    sin2θ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - cos2θ.cos2θ
    sin2φ.sin2θ

    [ ∵ sinθ = bcosφ , cosθ = bsinφ ]
    =
    sin4θ - cos4θ - cos2φ.sin2θ + cos2θ.sin2φ
    sin2φ.sin2θ

    =
    (sin2θ - cos2θ)(sin2θ + cos2θ) - cos2φ.sin2θ + cos2θ.sin2φ
    sin2φ.sin2θ

    =
    sin2θ - cos2φ.sin2θ - cos2θ + cos2θ.sin2φ
    sin2φ.sin2θ

    =
    sin2θ( 1 - cos2φ ) - cos2θ( 1 - sin2φ )
    sin2φ.sin2θ

    =
    sin2θ.sin2φ - cos2θ.cos2φ
    sin2φ.sin2θ

    = 1 -
    cos2θ.cos2φ
    = 1 -
    b2
    sin2φ.sin2θa2

    Required answer =
    a2 - b2
    a2

    Correct Option: D

    (a2 - 1)cot2φ + ( 1 - b2 )cot2 θ

    = (a2 - 1)
    cos2φ
    + ( 1 - b2 )
    cos2θ
    sin2φsin2θ

    =
    (a2 - 1)cos2φ.sin2θ + ( 1 - b2 )cos2θ.sin2φ
    sin2φ.sin2θ

    =
    a2cos2φ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - b2cos2θ.sin2φ
    sin2φ.sin2θ

    =
    sin2θ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - cos2θ.cos2θ
    sin2φ.sin2θ

    [ ∵ sinθ = bcosφ , cosθ = bsinφ ]
    =
    sin4θ - cos4θ - cos2φ.sin2θ + cos2θ.sin2φ
    sin2φ.sin2θ

    =
    (sin2θ - cos2θ)(sin2θ + cos2θ) - cos2φ.sin2θ + cos2θ.sin2φ
    sin2φ.sin2θ

    =
    sin2θ - cos2φ.sin2θ - cos2θ + cos2θ.sin2φ
    sin2φ.sin2θ

    =
    sin2θ( 1 - cos2φ ) - cos2θ( 1 - sin2φ )
    sin2φ.sin2θ

    =
    sin2θ.sin2φ - cos2θ.cos2φ
    sin2φ.sin2θ

    = 1 -
    cos2θ.cos2φ
    = 1 -
    b2
    sin2φ.sin2θa2

    Required answer =
    a2 - b2
    a2



  1. If sec2θ + tan2θ = √3 , then the value of (sec4θ - tan4θ) is









  1. View Hint View Answer Discuss in Forum

    sec2θ + tan2θ = √3
    and sec2θ - tan2θ = 1
    ∴ sec4θ - tan4θ = (sec2θ + tan2θ)(sec2θ - tan2θ)
    sec4θ - tan4θ = √3 × 1 = √3

    Correct Option: C

    sec2θ + tan2θ = √3
    and sec2θ - tan2θ = 1
    ∴ sec4θ - tan4θ = (sec2θ + tan2θ)(sec2θ - tan2θ)
    sec4θ - tan4θ = √3 × 1 = √3