Trigonometry
- Find numerical value of
9 + 4 cos² θ + 5 cosec² θ 1 + tan² θ
-
View Hint View Answer Discuss in Forum
9 + 4 cos² θ + 5 = 90 cosec² θ 1 + tan² θ = 9 sin² θ + 4 cos² θ + 5 sec² θ
= 9 sin² θ + 4 cos² θ + 5 cos² θ
= 9 sin² θ + 9 cos² θ
= 9 (sin² θ + cos² θ) = 9 × 1 = 9Correct Option: C
9 + 4 cos² θ + 5 = 90 cosec² θ 1 + tan² θ = 9 sin² θ + 4 cos² θ + 5 sec² θ
= 9 sin² θ + 4 cos² θ + 5 cos² θ
= 9 sin² θ + 9 cos² θ
= 9 (sin² θ + cos² θ) = 9 × 1 = 9
- If tanθ + secθ = 3, θ being acute, the value of 5 sinθ is :
-
View Hint View Answer Discuss in Forum
tanθ + secθ = 3 ......(i)
∵ sec² θ – tan² θ = 1
⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 .... (ii) 3
On adding equations (i) and (ii),2 secθ = 3 + 1 = 10 3 3
On subtracting equation (ii) from (i),2tanθ = 3 - 1 3 = 9 - 1 = 8 3 3 ∴ sin θ = tan θ sec θ = 8 × 3 = 4 3 10 5 ∴ 5 sinθ = 5 × 4 = 4 5
Correct Option: D
tanθ + secθ = 3 ......(i)
∵ sec² θ – tan² θ = 1
⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 .... (ii) 3
On adding equations (i) and (ii),2 secθ = 3 + 1 = 10 3 3
On subtracting equation (ii) from (i),2tanθ = 3 - 1 3 = 9 - 1 = 8 3 3 ∴ sin θ = tan θ sec θ = 8 × 3 = 4 3 10 5 ∴ 5 sinθ = 5 × 4 = 4 5
-
If cosθ = p then the value of tanθ is : √p² + q²
-
View Hint View Answer Discuss in Forum
cosθ = p √p² + q²
∴ sinθ = √1 - cos² θ∴ tanθ = sinθ cosθ = q × √p² + q² = q √p² + q² p p
Correct Option: B
cosθ = p √p² + q²
∴ sinθ = √1 - cos² θ∴ tanθ = sinθ cosθ = q × √p² + q² = q √p² + q² p p
- If θ be acute angle and tan (4θ – 50°) = cot(50° – θ), then the value of θ in degrees is :
-
View Hint View Answer Discuss in Forum
tan (4θ – 50°) = cot (50° – θ)
⇒ tan (4θ – 50°)
= tan (90° – (50° – θ))
⇒ 4θ – 50° = 90° – (50° – θ)
⇒ 4θ – 50° = 90° – 50° + θ
⇒ 4θ – 50° = 40° + θ
⇒ 4θ – θ = 40° + 50°⇒ 3θ = 90° ⇒ θ = 90° = 30° 3
Correct Option: D
tan (4θ – 50°) = cot (50° – θ)
⇒ tan (4θ – 50°)
= tan (90° – (50° – θ))
⇒ 4θ – 50° = 90° – (50° – θ)
⇒ 4θ – 50° = 90° – 50° + θ
⇒ 4θ – 50° = 40° + θ
⇒ 4θ – θ = 40° + 50°⇒ 3θ = 90° ⇒ θ = 90° = 30° 3
- If sin θ + sin²θ = 1 then cos²θ + cos4θ is equal to
-
View Hint View Answer Discuss in Forum
sinθ + sin²θ = 1
⇒ sinθ = 1 – sin²θ = cos2θ
∴ cos²θ + cos4θ
= cos²θ + (cos²θ)²
= cos²θ + sin²θ = 1Correct Option: B
sinθ + sin²θ = 1
⇒ sinθ = 1 – sin²θ = cos2θ
∴ cos²θ + cos4θ
= cos²θ + (cos²θ)²
= cos²θ + sin²θ = 1