Trigonometry


  1. If the angle of elevation of the sun decreases from 45° to 30°, then the length of the shadow of a pillar increases by 60m. The height of the pillar is









  1. View Hint View Answer Discuss in Forum


    AB = Height of pole = h metre
    CD = 60 metre
    In ∆ABC

    tan 45° =
    AB
    ⇒ 1 =
    h
    BCBC

    ⇒ BC = h metre
    In ∆ABD,
    tan 30° =
    AB
    BD

    1
    =
    h
    3h + 60

    ⇒ √3 h = h + 60
    ⇒ √3 h – h = 60
    ⇒ h (√3 - 1) = 60
    ⇒ h =
    60
    3 - 1

    =
    60(√3 + 1)
    =
    60(√3 + 1)
    = 90
    (√3 - 1)(√3 + 1)2

    = 30 (√3 + 1) metre

    Correct Option: C


    AB = Height of pole = h metre
    CD = 60 metre
    In ∆ABC

    tan 45° =
    AB
    ⇒ 1 =
    h
    BCBC

    ⇒ BC = h metre
    In ∆ABD,
    tan 30° =
    AB
    BD

    1
    =
    h
    3h + 60

    ⇒ √3 h = h + 60
    ⇒ √3 h – h = 60
    ⇒ h (√3 - 1) = 60
    ⇒ h =
    60
    3 - 1

    =
    60(√3 + 1)
    =
    60(√3 + 1)
    = 90
    (√3 - 1)(√3 + 1)2

    = 30 (√3 + 1) metre


  1. An aeroplane flying horizontally at a height of 3 km. above the ground is observed at a certain point on earth to subtend an angle of 60°. After 15 seconds of flight, its angle of elevation is changed to 30°. The speed of the aeroplane (Take, √3 = 1.732) is









  1. View Hint View Answer Discuss in Forum


    AB = CD = 3000 metre
    A and C = Positions of aeroplane
    ∠AOB = 60°; ∠COD = 30°
    In ∆OAB,

    tan 60° =
    AB
    OB

    ⇒√3 =
    3000
    OB

    ⇒ OB =
    3000
    3

    = 1000 √3 metre
    In ∆OCD,
    tan 30° =
    CD
    OD

    1
    =
    3000
    3OD

    ⇒ OD = 3000 √3 metre
    ∴ BD = (3000 √3 – 1000 √3 ) metre
    = 2000 √3 metre
    ∴ Speed of aeroplane
    =
    2000√3
    m./sec.
    15

    =2000 × 1.732m./sec.
    15

    = 230.93 m./sec.

    Correct Option: B


    AB = CD = 3000 metre
    A and C = Positions of aeroplane
    ∠AOB = 60°; ∠COD = 30°
    In ∆OAB,

    tan 60° =
    AB
    OB

    ⇒√3 =
    3000
    OB

    ⇒ OB =
    3000
    3

    = 1000 √3 metre
    In ∆OCD,
    tan 30° =
    CD
    OD

    1
    =
    3000
    3OD

    ⇒ OD = 3000 √3 metre
    ∴ BD = (3000 √3 – 1000 √3 ) metre
    = 2000 √3 metre
    ∴ Speed of aeroplane
    =
    2000√3
    m./sec.
    15

    =2000 × 1.732m./sec.
    15

    = 230.93 m./sec.



  1. If the length of the shadow of a vertical pole be √3 times the height of the pole, the angle of elevation of the sun is :









  1. View Hint View Answer Discuss in Forum


    AB = Height of pole = x units
    BC = Length of shadow
    = √3 x units
    ∠ACB = θ

    ∴ tan θ =
    AB
    BC

    ⇒ tan θ =
    x
    =
    1
    = tan 30°
    3 x3

    ⇒ θ = 30°

    Correct Option: C


    AB = Height of pole = x units
    BC = Length of shadow
    = √3 x units
    ∠ACB = θ

    ∴ tan θ =
    AB
    BC

    ⇒ tan θ =
    x
    =
    1
    = tan 30°
    3 x3

    ⇒ θ = 30°


  1. The angle of elevation of the top of a tower from two horizontal points (in opposite sides) at distances of 25 metre and 64 metre from the base of tower are x and 90° – x respectively. The height of the tower will be









  1. View Hint View Answer Discuss in Forum


    Let AB = Height of tower = h metre
    BC = 25 metre
    BD = 64 metre
    ∠ACB = x° and ∠ADB = (90 – x)
    In ∆ABC,

    tan x =
    AB
    BC

    ⇒ tan x =
    h
    25

    In ∆ABD,
    tan (90° – x) =
    AB
    BD

    ⇒ cot x =
    h
    64

    ∴ tanx . cotx =
    h
    ×
    h
    2564

    ⇒ h² = 25 × 64
    ∴ h = √25 × 64 = 5 × 8
    = 40 metre

    Correct Option: D


    Let AB = Height of tower = h metre
    BC = 25 metre
    BD = 64 metre
    ∠ACB = x° and ∠ADB = (90 – x)
    In ∆ABC,

    tan x =
    AB
    BC

    ⇒ tan x =
    h
    25

    In ∆ABD,
    tan (90° – x) =
    AB
    BD

    ⇒ cot x =
    h
    64

    ∴ tanx . cotx =
    h
    ×
    h
    2564

    ⇒ h² = 25 × 64
    ∴ h = √25 × 64 = 5 × 8
    = 40 metre



  1. From two points, lying on the same horizontal line, the angles of elevation of the top of the pillar are θ and φ (θ < φ). If the height of the pillar is ‘h’ m and the two points lie on the same sides of the piller, then the distance between the two points is









  1. View Hint View Answer Discuss in Forum


    Let AB = height of pole = h metre
    ∠ACB = θ, ∠ADB = φ
    In ∆ABD,

    tan φ =
    AB
    BD

    ⇒ BD =
    h
    = h cot φ
    tan φ

    In ∆ABC,
    tan θ =
    AB
    BC

    ⇒ BC =
    h
    = h cot θ
    tan θ

    ∴ Required distance
    = CD = h cotθ – h cotφ
    = h (cotθ – cotφ) metre

    Correct Option: C


    Let AB = height of pole = h metre
    ∠ACB = θ, ∠ADB = φ
    In ∆ABD,

    tan φ =
    AB
    BD

    ⇒ BD =
    h
    = h cot φ
    tan φ

    In ∆ABC,
    tan θ =
    AB
    BC

    ⇒ BC =
    h
    = h cot θ
    tan θ

    ∴ Required distance
    = CD = h cotθ – h cotφ
    = h (cotθ – cotφ) metre