Trigonometry


  1. If ∠ A and ∠ B are complementary to each other, then the value of sec² A + sec² B – sec² A . sec² B is









  1. View Hint View Answer Discuss in Forum

    A + B = 90°
    ⇒ B = 90° – A
    ∴ sec²A + sec²B – sec²A . sec²B
    = sec²A + cosec²A – sec²A . cosec²A

    =
    1
    +
    1
    cos²Asin²A

    -
    1
    sin²A . cos²A

    =
    sin²A + cos²A - 1
    sin²A . cos²A

    =
    1 - 1
    = 0
    sin²A . cos²A

    Correct Option: D

    A + B = 90°
    ⇒ B = 90° – A
    ∴ sec²A + sec²B – sec²A . sec²B
    = sec²A + cosec²A – sec²A . cosec²A

    =
    1
    +
    1
    cos²Asin²A

    -
    1
    sin²A . cos²A

    =
    sin²A + cos²A - 1
    sin²A . cos²A

    =
    1 - 1
    = 0
    sin²A . cos²A


  1. If x, y are acute angles, 0 < x + y < 90° and sin (2x – 20°) = cos (2y + 20°), then the value of tan (x + y) is :









  1. View Hint View Answer Discuss in Forum

    sin (2x – 20°) = cos (2y + 20°)
    ⇒ sin (2x – 20°) = sin (90° – 2y – 20°)
    ⇒ 2x–20° = 70° – 2y
    ⇒ 2x + 2y = 70 +20 = 90°
    ⇒ x + y = 45°
    ∴ tan (x + y) = tan 45° = 1

    Correct Option: D

    sin (2x – 20°) = cos (2y + 20°)
    ⇒ sin (2x – 20°) = sin (90° – 2y – 20°)
    ⇒ 2x–20° = 70° – 2y
    ⇒ 2x + 2y = 70 +20 = 90°
    ⇒ x + y = 45°
    ∴ tan (x + y) = tan 45° = 1



  1. If tan 15° = 2 – √3 , the value of tan 15° cot 75° + tan 75° cot 15°is









  1. View Hint View Answer Discuss in Forum

    tan 15° . cot 75° + tan 75°. cot 15°
    = tan 15°. cot (90° – 15°) + tan (90° – 15°). cot 15°
    = tan² 15° + cot2 15° ......(i)

    tan 15° = 2 - √3
    ∴ cot 15°

    =
    1
    =
    2 + √3
    2 - √3 (2 - √3)(2 + √3)

    = 2 + √3
    ∴ tan² 15° + cot² 15°
    = (2 - √3)² + (2 + √3
    = 2 (4 + 3) = 14

    Correct Option: A

    tan 15° . cot 75° + tan 75°. cot 15°
    = tan 15°. cot (90° – 15°) + tan (90° – 15°). cot 15°
    = tan² 15° + cot2 15° ......(i)

    tan 15° = 2 - √3
    ∴ cot 15°

    =
    1
    =
    2 + √3
    2 - √3 (2 - √3)(2 + √3)

    = 2 + √3
    ∴ tan² 15° + cot² 15°
    = (2 - √3)² + (2 + √3
    = 2 (4 + 3) = 14


  1. The numerical value of cot18°
    is









  1. View Hint View Answer Discuss in Forum

    cot 18°

    cot72° . cos²22° +
    1
    tan 72° . sec²68°

    = cot 18°.cot 72°.cos²22° +
    cot 18°
    = cot 18°.tan 18°.cos²22° +
    cot 18°
    . cos² 68°
    tan 72° . sec² 18°cot 18°

    = cos² 22°+ cos² 68°
    = cos²22° + sin²22° = 1

    Correct Option: A

    cot 18°

    cot72° . cos²22° +
    1
    tan 72° . sec²68°

    = cot 18°.cot 72°.cos²22° +
    cot 18°
    = cot 18°.tan 18°.cos²22° +
    cot 18°
    . cos² 68°
    tan 72° . sec² 18°cot 18°

    = cos² 22°+ cos² 68°
    = cos²22° + sin²22° = 1



  1. The value of sin²1° + sin²5° + sin²9° + .... + sin²89° is









  1. View Hint View Answer Discuss in Forum

    No. of terms in 1 + 5 + 9 + ... + 89 = n
    ∴ a + (n –1) d = t 2
    ⇒ 1 + (n – 1) 4 = 89
    ⇒ (n– 1) 4 = 89 – 1 = 88
    ⇒ n – 1 = 22
    ⇒ n = 23
    Now, sin²1° + sin²89° + sin²5° + sin²85° + ... + to 22 terms + sin²45°
    = (sin²1° + cos²1°) + (sin²5° + cos²5°) + ... + to 11 terms +

    1² = 11 × 1 + (1 / 2)
    2

    = 11 +
    1
    = 11
    1
    22

    Correct Option: A

    No. of terms in 1 + 5 + 9 + ... + 89 = n
    ∴ a + (n –1) d = t 2
    ⇒ 1 + (n – 1) 4 = 89
    ⇒ (n– 1) 4 = 89 – 1 = 88
    ⇒ n – 1 = 22
    ⇒ n = 23
    Now, sin²1° + sin²89° + sin²5° + sin²85° + ... + to 22 terms + sin²45°
    = (sin²1° + cos²1°) + (sin²5° + cos²5°) + ... + to 11 terms +

    1² = 11 × 1 + (1 / 2)
    2

    = 11 +
    1
    = 11
    1
    22