Trigonometry


  1. If 0° < θ < 90° and 2 secθ = 3 cosec²θ , then θ is









  1. View Hint View Answer Discuss in Forum

    2 secθ = 3cosec²θ

    2
    =
    3
    =
    3

    cos θsin² θ1 - cos² θ

    ⇒ 2 – 2cos² θ = 3cos θ
    ⇒ 2cos² θ + 3cos θ – 2 = 0
    ⇒ 2cos² θ + 4cos θ – cos θ – 2 = 0
    ⇒ 2cosθ (cosθ + 2) –1 (cosθ + 2)
    = 0
    ⇒ (2cosθ – 1) (cosθ + 2) = 0
    ∴ 2cosθ – 1 = 0 as cosθ + 2 ≠ 0
    ⇒ cos θ -
    1
    = cos 60° or cos
    π
    23

    ⇒ θ =
    π
    3

    Correct Option: C

    2 secθ = 3cosec²θ

    2
    =
    3
    =
    3

    cos θsin² θ1 - cos² θ

    ⇒ 2 – 2cos² θ = 3cos θ
    ⇒ 2cos² θ + 3cos θ – 2 = 0
    ⇒ 2cos² θ + 4cos θ – cos θ – 2 = 0
    ⇒ 2cosθ (cosθ + 2) –1 (cosθ + 2)
    = 0
    ⇒ (2cosθ – 1) (cosθ + 2) = 0
    ∴ 2cosθ – 1 = 0 as cosθ + 2 ≠ 0
    ⇒ cos θ -
    1
    = cos 60° or cos
    π
    23

    ⇒ θ =
    π
    3











  1. View Hint View Answer Discuss in Forum

    Expression

    =
    1 + sin θ
    +
    1 - sin θ
    cos θcos θ

    =
    1 + sin θ + 1 - sin θ
    +
    2
    cos θcos θ

    = 2 secθ

    Correct Option: D

    Expression

    =
    1 + sin θ
    +
    1 - sin θ
    cos θcos θ

    =
    1 + sin θ + 1 - sin θ
    +
    2
    cos θcos θ

    = 2 secθ



  1. A person from the top of a hill observes a vehicle moving towards him at a uniform speed. It takes 10 minutes for the angle of depression to change from 45° to 60°. After this the time required by the vehicle to reach the bottom of the hill is









  1. View Hint View Answer Discuss in Forum


    AB = height of hill = h metre
    Let speed of vehicle be v metre/minute.
    Time taken to reach B from D = t minutes
    CD = 10v metre
    BD = vt metre
    In ∆ ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    metre
    BC

    ⇒ BC = h
    = (10v + vt) metre ....(i)
    In ∆ABD,
    tan 60° =
    AB
    BD

    ⇒ √3
    =
    h
    vt

    ⇒ h = √3 vt
    ⇒ 10v + vt = √3 vt
    ⇒ 10 = √3 t – t
    ⇒ 10 = t (√3 - 1)
    ⇒ t
    =
    10
    3- 1

    =
    10(√3 + 1)
    =
    10(√3 + 1)
    (√3 - 1)(√3 + 1)2

    = 5 (1.732 + 1) = 5 × 2.732
    = 13.66 minutes
    = 13 minutes 40 seconds

    Correct Option: C


    AB = height of hill = h metre
    Let speed of vehicle be v metre/minute.
    Time taken to reach B from D = t minutes
    CD = 10v metre
    BD = vt metre
    In ∆ ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    metre
    BC

    ⇒ BC = h
    = (10v + vt) metre ....(i)
    In ∆ABD,
    tan 60° =
    AB
    BD

    ⇒ √3
    =
    h
    vt

    ⇒ h = √3 vt
    ⇒ 10v + vt = √3 vt
    ⇒ 10 = √3 t – t
    ⇒ 10 = t (√3 - 1)
    ⇒ t
    =
    10
    3- 1

    =
    10(√3 + 1)
    =
    10(√3 + 1)
    (√3 - 1)(√3 + 1)2

    = 5 (1.732 + 1) = 5 × 2.732
    = 13.66 minutes
    = 13 minutes 40 seconds


  1. The value of









  1. View Hint View Answer Discuss in Forum

    (2 cos²θ – 1)

    1 + tanθ+1 - tanθ
    1 - tanθ1 + tanθ

    = (2 cos²θ – 1)
    (1 + tanθ)² + (1 - tanθ)²
    1 - tan²θ

    = (2 cos²θ – 1)

    =
    2sec² θ.cos² θ(2cos² θ - 1)
    2cos² θ - 1

    = 2

    Correct Option: D

    (2 cos²θ – 1)

    1 + tanθ+1 - tanθ
    1 - tanθ1 + tanθ

    = (2 cos²θ – 1)
    (1 + tanθ)² + (1 - tanθ)²
    1 - tan²θ

    = (2 cos²θ – 1)

    =
    2sec² θ.cos² θ(2cos² θ - 1)
    2cos² θ - 1

    = 2



  1. If tan 7θ tan 2θ = 1, then the value of tan 3θ is









  1. View Hint View Answer Discuss in Forum

    tan 7θ . tan 2θ = 1

    ⇒ tan 7θ =
    1
    = cot 2θ
    tan 2θ

    ⇒ tan 7θ = tan (90° – 2θ)
    ⇒ 7θ = 90° – 2θ
    ⇒ 9θ = 90° ⇒ θ = 10°
    ∴ tan 3θ = tan 30° =
    1
    3

    Correct Option: C

    tan 7θ . tan 2θ = 1

    ⇒ tan 7θ =
    1
    = cot 2θ
    tan 2θ

    ⇒ tan 7θ = tan (90° – 2θ)
    ⇒ 7θ = 90° – 2θ
    ⇒ 9θ = 90° ⇒ θ = 10°
    ∴ tan 3θ = tan 30° =
    1
    3