Trigonometry
-
If x sin 45° = y cosec 30°, then x4 is equal to y4
-
View Hint View Answer Discuss in Forum
x sin 45° = y cosec 30°
⇒ x × 1 = y × 2 √2 ⇒ x = 2√2 y ⇒ x4 = (2√2)4= 24 × 22 y4
= 26 = 43
Correct Option: A
x sin 45° = y cosec 30°
⇒ x × 1 = y × 2 √2 ⇒ x = 2√2 y ⇒ x4 = (2√2)4= 24 × 22 y4
= 26 = 43
-
If cosec θ – cotθ = 7 , the value of cosecθ is : 2
-
View Hint View Answer Discuss in Forum
cosecθ – cotθ = 7 .......(i) 2
cosec²θ – cot²θ = 1
⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1
⇒ cosecθ + cotθ= 1 = 2 ........(iii) cosecθ - cotθ 7
On adding both equations,2 cosecθ = 7 + 2 2 7 = 49 + 4 + 53 14 14 ⇒ cosecθ = 53 28
Correct Option: C
cosecθ – cotθ = 7 .......(i) 2
cosec²θ – cot²θ = 1
⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1
⇒ cosecθ + cotθ= 1 = 2 ........(iii) cosecθ - cotθ 7
On adding both equations,2 cosecθ = 7 + 2 2 7 = 49 + 4 + 53 14 14 ⇒ cosecθ = 53 28
-
If tan θ = 3 and θ is acute, then cosec θ 4
-
View Hint View Answer Discuss in Forum
tan θ = 3 4 ∴ cot θ = 4 3
∵ cosec² θ – cot² θ = 1
⇒ cosec θ = √1 + cot² θ= 5 3
Correct Option: B
tan θ = 3 4 ∴ cot θ = 4 3
∵ cosec² θ – cot² θ = 1
⇒ cosec θ = √1 + cot² θ= 5 3
- If tan α = n tan β and sin α = m sin β, then cos² α is
-
View Hint View Answer Discuss in Forum
tan α = n tan β
⇒ tan β 1 tan α n ⇒ cot β n and tan α sin α = m sin β = 1 sin α m ⇒ cosec β = m sin α
[∵ cosec²β - cot² β = 1]⇒ m² - n² = 1 sin²α sin²α ⇒ m² - n²cos²α = 1 sin²α tan²α ⇒ m² - n²cos²α = 1 sin²α
⇒ m² - n² cos²α = sin²α
= 1 - cos²α
⇒ m² - 1n² cos²α - cos²α⇒cos²α = m² - 1 n² - 1
Correct Option: C
tan α = n tan β
⇒ tan β 1 tan α n ⇒ cot β n and tan α sin α = m sin β = 1 sin α m ⇒ cosec β = m sin α
[∵ cosec²β - cot² β = 1]⇒ m² - n² = 1 sin²α sin²α ⇒ m² - n²cos²α = 1 sin²α tan²α ⇒ m² - n²cos²α = 1 sin²α
⇒ m² - n² cos²α = sin²α
= 1 - cos²α
⇒ m² - 1n² cos²α - cos²α⇒cos²α = m² - 1 n² - 1
- sin²θ– 3 sin θ + 2 = 0 will be true if
-
View Hint View Answer Discuss in Forum
sin² θ – 3 sin θ + 2 = 0
⇒ sin² θ – 2 sin θ – sin θ + 2 = 0
⇒ sin θ (sin θ – 2) –1 (sin θ – 2) = 0
⇒ (sin θ – 1) (sin θ – 2) = 0
⇒ sin θ = 1 = sin 90°
⇒ θ = 90° and sin θ ≠ 2Correct Option: D
sin² θ – 3 sin θ + 2 = 0
⇒ sin² θ – 2 sin θ – sin θ + 2 = 0
⇒ sin θ (sin θ – 2) –1 (sin θ – 2) = 0
⇒ (sin θ – 1) (sin θ – 2) = 0
⇒ sin θ = 1 = sin 90°
⇒ θ = 90° and sin θ ≠ 2