Trigonometry


  1. If x sin 45° = y cosec 30°, then
    x4
    is equal to
    y4









  1. View Hint View Answer Discuss in Forum

    x sin 45° = y cosec 30°

    ⇒ x ×
    1
    = y × 2
    2

    x
    = 2√2
    y

    x4
    = (2√2)4= 24 × 22
    y4

    = 26 = 43

    Correct Option: A

    x sin 45° = y cosec 30°

    ⇒ x ×
    1
    = y × 2
    2

    x
    = 2√2
    y

    x4
    = (2√2)4= 24 × 22
    y4

    = 26 = 43


  1. If cosec θ – cotθ =
    7
    , the value of cosecθ is :
    2









  1. View Hint View Answer Discuss in Forum

    cosecθ – cotθ =
    7
    .......(i)
    2

    cosec²θ – cot²θ = 1
    ⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1
    ⇒ cosecθ + cotθ
    =
    1
    =
    2
    ........(iii)
    cosecθ - cotθ7

    On adding both equations,
    2 cosecθ =
    7
    +
    2
    27

    =
    49 + 4
    +
    53
    1414

    ⇒ cosecθ =
    53
    28

    Correct Option: C

    cosecθ – cotθ =
    7
    .......(i)
    2

    cosec²θ – cot²θ = 1
    ⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1
    ⇒ cosecθ + cotθ
    =
    1
    =
    2
    ........(iii)
    cosecθ - cotθ7

    On adding both equations,
    2 cosecθ =
    7
    +
    2
    27

    =
    49 + 4
    +
    53
    1414

    ⇒ cosecθ =
    53
    28



  1. If tan θ =
    3
    and θ is acute, then cosec θ
    4









  1. View Hint View Answer Discuss in Forum

    tan θ =
    3
    4

    ∴ cot θ =
    4
    3

    ∵ cosec² θ – cot² θ = 1
    ⇒ cosec θ = √1 + cot² θ

    =
    5
    3

    Correct Option: B

    tan θ =
    3
    4

    ∴ cot θ =
    4
    3

    ∵ cosec² θ – cot² θ = 1
    ⇒ cosec θ = √1 + cot² θ

    =
    5
    3


  1. If tan α = n tan β and sin α = m sin β, then cos² α is









  1. View Hint View Answer Discuss in Forum

    tan α = n tan β

    ⇒ tan β
    1
    tan α
    n

    ⇒ cot β
    n
    and
    tan α

    sin α = m sin β =
    1
    sin α
    m

    ⇒ cosec β =
    m
    sin α

    [∵ cosec²β - cot² β = 1]
    -
    = 1
    sin²αsin²α

    -
    n²cos²α
    = 1
    sin²αtan²α

    m² - n²cos²α
    = 1
    sin²α

    ⇒ m² - n² cos²α = sin²α
    = 1 - cos²α
    ⇒ m² - 1n² cos²α - cos²α
    ⇒cos²α =
    m² - 1
    n² - 1

    Correct Option: C

    tan α = n tan β

    ⇒ tan β
    1
    tan α
    n

    ⇒ cot β
    n
    and
    tan α

    sin α = m sin β =
    1
    sin α
    m

    ⇒ cosec β =
    m
    sin α

    [∵ cosec²β - cot² β = 1]
    -
    = 1
    sin²αsin²α

    -
    n²cos²α
    = 1
    sin²αtan²α

    m² - n²cos²α
    = 1
    sin²α

    ⇒ m² - n² cos²α = sin²α
    = 1 - cos²α
    ⇒ m² - 1n² cos²α - cos²α
    ⇒cos²α =
    m² - 1
    n² - 1



  1. sin²θ– 3 sin θ + 2 = 0 will be true if









  1. View Hint View Answer Discuss in Forum

    sin² θ – 3 sin θ + 2 = 0
    ⇒ sin² θ – 2 sin θ – sin θ + 2 = 0
    ⇒ sin θ (sin θ – 2) –1 (sin θ – 2) = 0
    ⇒ (sin θ – 1) (sin θ – 2) = 0
    ⇒ sin θ = 1 = sin 90°
    ⇒ θ = 90° and sin θ ≠ 2

    Correct Option: D

    sin² θ – 3 sin θ + 2 = 0
    ⇒ sin² θ – 2 sin θ – sin θ + 2 = 0
    ⇒ sin θ (sin θ – 2) –1 (sin θ – 2) = 0
    ⇒ (sin θ – 1) (sin θ – 2) = 0
    ⇒ sin θ = 1 = sin 90°
    ⇒ θ = 90° and sin θ ≠ 2