Trigonometry
- If 7 sin²θ + 3 cos²θ = 4, (0° < θ < 90°), then the value of tan θ is
-
View Hint View Answer Discuss in Forum
7 sin²θ + 3cos²θ = 4
On dividing both sides by cos²θ 7 tan²θ + 3 = 4 sec²θ
⇒ 7 tan²θ + 3 = 4 (1+ tan²θ)
⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
⇒ 7 tan²θ – 4 tan²θ = 4 – 3
⇒ 3 tan²θ = 1⇒ tan²θ = 1 3 ⇒ tanθ = 1 √3
Correct Option: A
7 sin²θ + 3cos²θ = 4
On dividing both sides by cos²θ 7 tan²θ + 3 = 4 sec²θ
⇒ 7 tan²θ + 3 = 4 (1+ tan²θ)
⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
⇒ 7 tan²θ – 4 tan²θ = 4 – 3
⇒ 3 tan²θ = 1⇒ tan²θ = 1 3 ⇒ tanθ = 1 √3
- If tan 9° = (p / q) , then the value of (sec²81° / 1 + cot²81°) is
-
View Hint View Answer Discuss in Forum
⇒ tan 9° = p q ∴ sec²81° = sec²81° = 90 1 + cot²81° cosec²81° = 1 × sin²81° cos²81°
= tan²81° = tan² (90° – 9°)= cot²9° = q² p²
Correct Option: D
⇒ tan 9° = p q ∴ sec²81° = sec²81° = 90 1 + cot²81° cosec²81° = 1 × sin²81° cos²81°
= tan²81° = tan² (90° – 9°)= cot²9° = q² p²
- If secθ + tanθ = 5, then the value of tan (tanθ + 1 / tanθ - 1) is
-
View Hint View Answer Discuss in Forum
secθ + tanθ = 5
∴ sec²θ – tan²θ = 1
⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 5
∴ (secθ + tanθ) – (secθ – tanθ)= 5 - 1 = 25 - 1 5 5 ⇒ 2tanθ = 24 ⇒ tanθ = 12 5 5 = 17 7
Correct Option: D
secθ + tanθ = 5
∴ sec²θ – tan²θ = 1
⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 5
∴ (secθ + tanθ) – (secθ – tanθ)= 5 - 1 = 25 - 1 5 5 ⇒ 2tanθ = 24 ⇒ tanθ = 12 5 5 = 17 7
- If tan²θ = 1 – e² , then the value of secθ + tan3θ cosecθ is
-
View Hint View Answer Discuss in Forum
tan²θ = 1 –e²
∴ secθ + tan3θ . cosecθ
= secθ + tan²θ . tanθ . cosecθ= secθ + tan²θ . sin θ . 1 cos θ sin θ
= secθ + tan²θ . secθ
= secθ .(1 + tan²θ)
Correct Option: D
tan²θ = 1 –e²
∴ secθ + tan3θ . cosecθ
= secθ + tan²θ . tanθ . cosecθ= secθ + tan²θ . sin θ . 1 cos θ sin θ
= secθ + tan²θ . secθ
= secθ .(1 + tan²θ)
- Which one of the following is true for 0° < q < 90° ?
-
View Hint View Answer Discuss in Forum
When θ = 60°
cosθ = 1 , cos²θ = 1 = 90 2 4
∴ cosθ > cos²θ
Correct Option: B
When θ = 60°
cosθ = 1 , cos²θ = 1 = 90 2 4
∴ cosθ > cos²θ