Trigonometry


  1. If 7 sin²θ + 3 cos²θ = 4, (0° < θ < 90°), then the value of tan θ is









  1. View Hint View Answer Discuss in Forum

    7 sin²θ + 3cos²θ = 4
    On dividing both sides by cos²θ 7 tan²θ + 3 = 4 sec²θ
    ⇒ 7 tan²θ + 3 = 4 (1+ tan²θ)
    ⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
    ⇒ 7 tan²θ – 4 tan²θ = 4 – 3
    ⇒ 3 tan²θ = 1

    ⇒ tan²θ =
    1
    3

    ⇒ tanθ =
    1
    3

    Correct Option: A

    7 sin²θ + 3cos²θ = 4
    On dividing both sides by cos²θ 7 tan²θ + 3 = 4 sec²θ
    ⇒ 7 tan²θ + 3 = 4 (1+ tan²θ)
    ⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
    ⇒ 7 tan²θ – 4 tan²θ = 4 – 3
    ⇒ 3 tan²θ = 1

    ⇒ tan²θ =
    1
    3

    ⇒ tanθ =
    1
    3


  1. If tan 9° = (p / q) , then the value of (sec²81° / 1 + cot²81°) is









  1. View Hint View Answer Discuss in Forum

    ⇒ tan 9° =
    p
    q

    sec²81°
    =
    sec²81°
    = 90
    1 + cot²81°cosec²81°

    =
    1
    × sin²81°
    cos²81°

    = tan²81° = tan² (90° – 9°)
    = cot²9° =

    Correct Option: D

    ⇒ tan 9° =
    p
    q

    sec²81°
    =
    sec²81°
    = 90
    1 + cot²81°cosec²81°

    =
    1
    × sin²81°
    cos²81°

    = tan²81° = tan² (90° – 9°)
    = cot²9° =



  1. If secθ + tanθ = 5, then the value of tan (tanθ + 1 / tanθ - 1) is









  1. View Hint View Answer Discuss in Forum

    secθ + tanθ = 5
    ∴ sec²θ – tan²θ = 1
    ⇒ (secθ – tanθ) (secθ + tanθ) = 1

    ⇒ secθ – tanθ =
    1
    5

    ∴ (secθ + tanθ) – (secθ – tanθ)
    = 5 -
    1
    =
    25 - 1
    55

    ⇒ 2tanθ =
    24
    ⇒ tanθ =
    12
    55


    =
    17
    7

    Correct Option: D

    secθ + tanθ = 5
    ∴ sec²θ – tan²θ = 1
    ⇒ (secθ – tanθ) (secθ + tanθ) = 1

    ⇒ secθ – tanθ =
    1
    5

    ∴ (secθ + tanθ) – (secθ – tanθ)
    = 5 -
    1
    =
    25 - 1
    55

    ⇒ 2tanθ =
    24
    ⇒ tanθ =
    12
    55


    =
    17
    7


  1. If tan²θ = 1 – e² , then the value of secθ + tan3θ cosecθ is









  1. View Hint View Answer Discuss in Forum

    tan²θ = 1 –e²
    ∴ secθ + tan3θ . cosecθ
    = secθ + tan²θ . tanθ . cosecθ

    = secθ + tan²θ .
    sin θ
    .
    1
    cos θsin θ

    = secθ + tan²θ . secθ
    = secθ .(1 + tan²θ)

    Correct Option: D

    tan²θ = 1 –e²
    ∴ secθ + tan3θ . cosecθ
    = secθ + tan²θ . tanθ . cosecθ

    = secθ + tan²θ .
    sin θ
    .
    1
    cos θsin θ

    = secθ + tan²θ . secθ
    = secθ .(1 + tan²θ)



  1. Which one of the following is true for 0° < q < 90° ?









  1. View Hint View Answer Discuss in Forum

    When θ = 60°

    cosθ =
    1
    , cos²θ =
    1
    = 90
    24

    ∴ cosθ > cos²θ

    Correct Option: B

    When θ = 60°

    cosθ =
    1
    , cos²θ =
    1
    = 90
    24

    ∴ cosθ > cos²θ