Trigonometry
-
If y = 2secθ and x = 3 tanθ then x2 − y2 is 9 4
-
View Hint View Answer Discuss in Forum
y = 2secθ ⇒ secθ = y 2 and x = 3 tanθ ⇒ tanθ = x 3
∵ sec2θ – tan2θ = 1⇒ y2 − x2 = 1 4 9 ⇒ x2 − y2 = 1 9 4 Correct Option: B
y = 2secθ ⇒ secθ = y 2 and x = 3 tanθ ⇒ tanθ = x 3
∵ sec2θ – tan2θ = 1⇒ y2 − x2 = 1 4 9 ⇒ x2 − y2 = 1 9 4
-
If cosecθ + sinθ = 5 then the value of sinq is equal to cosecθ − sinθ 3
-
View Hint View Answer Discuss in Forum
cosecθ + sinθ = 5 cosecθ − sinθ 3
⇒ 5 cosecθ – 5 sinθ
= 3 cosecθ + 3 sinθ
⇒ 5 cosecθ – 3 cosecθ
= 5 sinθ + 3 sinθ
⇒ 2 cosecθ = 8 sinθ⇒ 1 = 4 sinθ sinθ
⇒ 4 sin2θ = 1 ⇒ 2sinθ = 1⇒ sinθ = 1 2 Correct Option: A
cosecθ + sinθ = 5 cosecθ − sinθ 3
⇒ 5 cosecθ – 5 sinθ
= 3 cosecθ + 3 sinθ
⇒ 5 cosecθ – 3 cosecθ
= 5 sinθ + 3 sinθ
⇒ 2 cosecθ = 8 sinθ⇒ 1 = 4 sinθ sinθ
⇒ 4 sin2θ = 1 ⇒ 2sinθ = 1⇒ sinθ = 1 2
-
If sinθ = √3 and 0° < θ < 90°, then the value of tan (θ – 15°) is 2
-
View Hint View Answer Discuss in Forum
sinθ = √3 = sin60° 2
⇒ θ = 60°
∴ tan (θ – 15°)
= tan (60° – 15°) = tan 45° = 1Correct Option: A
sinθ = √3 = sin60° 2
⇒ θ = 60°
∴ tan (θ – 15°)
= tan (60° – 15°) = tan 45° = 1
- If the angle of elevation of the Sun changes from 30° to 45°, the length of the shadow of a pillar decreases by 20 metres. The height of the pillar is
-
View Hint View Answer Discuss in Forum
Let AB be a pillar of height h meter
If BD = length of shadow = x
and DC = 20 m
then, BC = BD + DC
⇒ BC = (x + 20) metre
From ∆ ABD,tan 45° = h ⇒ h = x ...(i) x
From ∆ ABC,tan30° = AB ⇒ 1 = h BC √3 x + 20 ⇒ 1 = h ⇒ √3h = h + 20 √3 x + 20
[From (i)]⇒ (√3 - 1)h = 20 ⇒ h = h √3 - 1 = 20 × √3 + 1 √3 - 1 √3 + 1 = 20(√3 + 1) = 10(√3 + 1) metre 2 Correct Option: D
Let AB be a pillar of height h meter
If BD = length of shadow = x
and DC = 20 m
then, BC = BD + DC
⇒ BC = (x + 20) metre
From ∆ ABD,tan 45° = h ⇒ h = x ...(i) x
From ∆ ABC,tan30° = AB ⇒ 1 = h BC √3 x + 20 ⇒ 1 = h ⇒ √3h = h + 20 √3 x + 20
[From (i)]⇒ (√3 - 1)h = 20 ⇒ h = h √3 - 1 = 20 × √3 + 1 √3 - 1 √3 + 1 = 20(√3 + 1) = 10(√3 + 1) metre 2
- The value of (1 + tan2θ) (1 – sin2θ)
-
View Hint View Answer Discuss in Forum
Expression
= (1 + tan2θ) .(1 – sin2θ)
= sec2θ . cos2θ = 1
[∵ sec2θ – tan2θ = 1 = sin2θ + cos2θ ; secθ . cosθ = 1]Correct Option: B
Expression
= (1 + tan2θ) .(1 – sin2θ)
= sec2θ . cos2θ = 1
[∵ sec2θ – tan2θ = 1 = sin2θ + cos2θ ; secθ . cosθ = 1]