Trigonometry


  1. If cosecθ – sinθ = l and secθ – cosθ = m, then the value of l²m² (l² + m² + 3) is









  1. View Hint View Answer Discuss in Forum

    (l².m²)(m² + 3)
    = (cosec θ - sin θ)²
    (sec θ - cos θ)²
    {(cosec θ - sin θ)² + (sec θ - cos θ)² + 3}

    =
    cos4θ
    ×
    sin4θ
    sin2θcos2θ


    = cos²θ × sin²θ

    = cos2 θ + sin6θ + 3cos2θ . sin2θ
    = {(cos2θ + sin2θ)
    3 – 3 cos2θ . sin2θ(cos2θ + sin2θ)} + 3cos2θ . sin2θ
    [∵ a3 + b3 = (a + b)3– 3ab (a + b)]
    = 1 – 3 cos2θ . sin2θ + 3 cos2θ .
    sin2θ = 1

    Correct Option: C

    (l².m²)(m² + 3)
    = (cosec θ - sin θ)²
    (sec θ - cos θ)²
    {(cosec θ - sin θ)² + (sec θ - cos θ)² + 3}

    =
    cos4θ
    ×
    sin4θ
    sin2θcos2θ


    = cos²θ × sin²θ

    = cos2 θ + sin6θ + 3cos2θ . sin2θ
    = {(cos2θ + sin2θ)
    3 – 3 cos2θ . sin2θ(cos2θ + sin2θ)} + 3cos2θ . sin2θ
    [∵ a3 + b3 = (a + b)3– 3ab (a + b)]
    = 1 – 3 cos2θ . sin2θ + 3 cos2θ .
    sin2θ = 1


  1. An aeroplane when flying at a height of 3125 m from the ground passes vertically below another plane at an instant when the angle of elevation of the two planes from the same point on the ground are 30° and 60° respectively. The distance between the two planes at that instant is









  1. View Hint View Answer Discuss in Forum


    A and C ⇒ position of planes
    BC = 3125m
    Let AC = x metre
    In ∆ABD

    tan60° =
    AB
    BD

    ⇒ √3 =
    3125 + x
    BD

    ⇒ BD =
    3125 + x
    3

    In ∆BCD,
    tan30° =
    BC
    BD

    1
    =
    3125
    3
    3125 + x
    3

    ⇒ 3 (3125) = 3125 + x
    ⇒ 9375 = 3125 + x
    ⇒ x = 9375 – 3125
    x = 6250 metre

    Correct Option: D


    A and C ⇒ position of planes
    BC = 3125m
    Let AC = x metre
    In ∆ABD

    tan60° =
    AB
    BD

    ⇒ √3 =
    3125 + x
    BD

    ⇒ BD =
    3125 + x
    3

    In ∆BCD,
    tan30° =
    BC
    BD

    1
    =
    3125
    3
    3125 + x
    3

    ⇒ 3 (3125) = 3125 + x
    ⇒ 9375 = 3125 + x
    ⇒ x = 9375 – 3125
    x = 6250 metre



  1. The elevation of the top of a tower from a point on the ground is 45°. On travelling 60 m from the point towards the tower, the elevation of the top becomes 60°. The height of the tower (in metres) is









  1. View Hint View Answer Discuss in Forum


    AB = tower = h metre
    ∠ACB = 45°, ∠ADB = 60°
    CD = 60 metre] BD = x metre
    From ∆ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    x + 60

    ⇒ h = x + 60 ....................(i)
    From ∆ABD
    tan 60° =
    AB
    BD

    ⇒ √3 =
    h
    x

    ⇒ h = √3x
    ⇒ h = √3(h - 60)
    ⇒ √3h - h= 60√3
    ⇒ h(√3 - 1) = 60√3
    ⇒ h =
    60√3
    =
    60√3(√3 + 1)
    3 - 1(√3 - 1)(√3 + 1)

    = 30√3(√3 + 1)
    = 30(3 + √3) metre

    Correct Option: C


    AB = tower = h metre
    ∠ACB = 45°, ∠ADB = 60°
    CD = 60 metre] BD = x metre
    From ∆ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    x + 60

    ⇒ h = x + 60 ....................(i)
    From ∆ABD
    tan 60° =
    AB
    BD

    ⇒ √3 =
    h
    x

    ⇒ h = √3x
    ⇒ h = √3(h - 60)
    ⇒ √3h - h= 60√3
    ⇒ h(√3 - 1) = 60√3
    ⇒ h =
    60√3
    =
    60√3(√3 + 1)
    3 - 1(√3 - 1)(√3 + 1)

    = 30√3(√3 + 1)
    = 30(3 + √3) metre


  1. The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from 45° to 30°. Then the height of the tower is









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre
    ∠BDA = 30°
    ∠ACB = 45°
    CD = 10 metre
    From ∆ABC,

    tan45° =
    AB
    BC

    ⇒ 1 =
    h
    ⇒ h = x
    x

    ⇒ √3h = h +10 [∵ h = x ]
    ⇒ √3h - h = 10
    ⇒ h( √3 - 1) = 10
    ⇒ h =
    10
    =
    10
    ×
    3 + 1
    3 - 13 - 13 + 1

    =
    10(√3 + 1)
    = 5(√3 + 1) metre
    2

    Correct Option: C


    AB = Tower = h metre
    ∠BDA = 30°
    ∠ACB = 45°
    CD = 10 metre
    From ∆ABC,

    tan45° =
    AB
    BC

    ⇒ 1 =
    h
    ⇒ h = x
    x

    ⇒ √3h = h +10 [∵ h = x ]
    ⇒ √3h - h = 10
    ⇒ h( √3 - 1) = 10
    ⇒ h =
    10
    =
    10
    ×
    3 + 1
    3 - 13 - 13 + 1

    =
    10(√3 + 1)
    = 5(√3 + 1) metre
    2



  1. The angle of elevation of a tower from a distance 50 m from its foot is 30°. The height of the tower is









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre
    BC = 50 metre
    ∠ ACB = 30°

    ∴ tan 30° =
    AB
    BC

    1
    =
    AB
    350

    ⇒ AB =
    50
    metre
    3

    Correct Option: B


    AB = Tower = h metre
    BC = 50 metre
    ∠ ACB = 30°

    ∴ tan 30° =
    AB
    BC

    1
    =
    AB
    350

    ⇒ AB =
    50
    metre
    3