Correct Option: D
(a2 - 1)cot2φ + ( 1 - b2 )cot2 θ
= (a2 - 1) | cos2φ | + ( 1 - b2 ) | cos2θ | |
sin2φ | sin2θ |
= | (a2 - 1)cos2φ.sin2θ + ( 1 - b2 )cos2θ.sin2φ | |
sin2φ.sin2θ |
= | a2cos2φ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - b2cos2θ.sin2φ | |
sin2φ.sin2θ |
= | sin2θ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - cos2θ.cos2θ | |
sin2φ.sin2θ |
[ ∵ sinθ = bcosφ , cosθ = bsinφ ]
= | sin4θ - cos4θ - cos2φ.sin2θ + cos2θ.sin2φ | |
sin2φ.sin2θ |
= | (sin2θ - cos2θ)(sin2θ + cos2θ) - cos2φ.sin2θ + cos2θ.sin2φ | |
sin2φ.sin2θ |
= | sin2θ - cos2φ.sin2θ - cos2θ + cos2θ.sin2φ | |
sin2φ.sin2θ |
= | sin2θ( 1 - cos2φ ) - cos2θ( 1 - sin2φ ) | |
sin2φ.sin2θ |
= | sin2θ.sin2φ - cos2θ.cos2φ | |
sin2φ.sin2θ |
= 1 - | cos2θ.cos2φ | = 1 - | b2 |
sin2φ.sin2θ | a2 |
Required answer = | a2 - b2 | |
a2 |