Home » Aptitude » Trigonometry » Question
  1. If sin θ = a cos φ and cos θ = b sin φ , then the value of (a2 – 1) cot2 φ + (1 – b2 ) cot2θ is equal to :
    1. a2 + b2
      a2

    2. a2 + b2
      b2

    3. a2 - b2
      b2

    4. a2 - b2
      a2
Correct Option: D

(a2 - 1)cot2φ + ( 1 - b2 )cot2 θ

= (a2 - 1)
cos2φ
+ ( 1 - b2 )
cos2θ
sin2φsin2θ

=
(a2 - 1)cos2φ.sin2θ + ( 1 - b2 )cos2θ.sin2φ
sin2φ.sin2θ

=
a2cos2φ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - b2cos2θ.sin2φ
sin2φ.sin2θ

=
sin2θ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - cos2θ.cos2θ
sin2φ.sin2θ

[ ∵ sinθ = bcosφ , cosθ = bsinφ ]
=
sin4θ - cos4θ - cos2φ.sin2θ + cos2θ.sin2φ
sin2φ.sin2θ

=
(sin2θ - cos2θ)(sin2θ + cos2θ) - cos2φ.sin2θ + cos2θ.sin2φ
sin2φ.sin2θ

=
sin2θ - cos2φ.sin2θ - cos2θ + cos2θ.sin2φ
sin2φ.sin2θ

=
sin2θ( 1 - cos2φ ) - cos2θ( 1 - sin2φ )
sin2φ.sin2θ

=
sin2θ.sin2φ - cos2θ.cos2φ
sin2φ.sin2θ

= 1 -
cos2θ.cos2φ
= 1 -
b2
sin2φ.sin2θa2

Required answer =
a2 - b2
a2



Your comments will be displayed only after manual approval.