Trigonometry


  1. If cos α + sec α = √3 , then the value of cos3 α + sec3α is









  1. View Hint View Answer Discuss in Forum

    cos α + sec α = √3
    ∴ cos3 α + sec3 α = (cosα + secα)3 – 3 cosα . secα (cosα + secα)
    = (√3)3 - 3 × √3
    = 3√3 - 3√3 = 0

    Correct Option: C

    cos α + sec α = √3
    ∴ cos3 α + sec3 α = (cosα + secα)3 – 3 cosα . secα (cosα + secα)
    = (√3)3 - 3 × √3
    = 3√3 - 3√3 = 0


  1. The value of θ (0 ≤ θ ≤ 90°) satisfying 2 sin²θ = 3 cos θ is









  1. View Hint View Answer Discuss in Forum

    2 sin²θ = 3 cosθ
    ⇒ 2(1 – cos²θ) = 3 cosθ
    ⇒ 2 – 2cos²θ = 3 cosθ
    ⇒ 2 cos²θ + 3cosθ – 2 = 0
    ⇒ 2 cos²θ + 4 cosθ – cos θ – 2 = 0
    ⇒ 2 cosθ (cosθ + 2) –1(cosθ + 2) = 0
    ⇒ (2cosθ – 1) (cosθ + 2) = 0
    ⇒ 2 cosθ – 1 = 0 because cosθ + 2 ≠ 0
    ⇒ 2 cosθ = 1

    ⇒ cos θ =
    1
    = cos60°
    2

    ⇒ θ = 60°

    Correct Option: A

    2 sin²θ = 3 cosθ
    ⇒ 2(1 – cos²θ) = 3 cosθ
    ⇒ 2 – 2cos²θ = 3 cosθ
    ⇒ 2 cos²θ + 3cosθ – 2 = 0
    ⇒ 2 cos²θ + 4 cosθ – cos θ – 2 = 0
    ⇒ 2 cosθ (cosθ + 2) –1(cosθ + 2) = 0
    ⇒ (2cosθ – 1) (cosθ + 2) = 0
    ⇒ 2 cosθ – 1 = 0 because cosθ + 2 ≠ 0
    ⇒ 2 cosθ = 1

    ⇒ cos θ =
    1
    = cos60°
    2

    ⇒ θ = 60°



  1. If a (tanθ + cot θ ) = 1, sinθ + cos θ = b with 0° < θ < 90°, then a relation between a and b is









  1. View Hint View Answer Discuss in Forum

    a (tanθ + cotθ) = 1

    ⇒ asin θ+cos θ= 1
    cos θsin θ

    ⇒ asin² θ + cos² θ= 1
    sin θ.cos θ

    ⇒ sinθ . cosθ = a ....(i)
    sinθ + cosθ = b
    On squaring both sides,
    sin²θ + cos²θ + 2 sinθ . cosθ = b²
    ⇒ 1 + 2a = b²
    ⇒ 2a = b² –1

    Correct Option: C

    a (tanθ + cotθ) = 1

    ⇒ asin θ+cos θ= 1
    cos θsin θ

    ⇒ asin² θ + cos² θ= 1
    sin θ.cos θ

    ⇒ sinθ . cosθ = a ....(i)
    sinθ + cosθ = b
    On squaring both sides,
    sin²θ + cos²θ + 2 sinθ . cosθ = b²
    ⇒ 1 + 2a = b²
    ⇒ 2a = b² –1


  1. If A is an acute angle and cot A + cosec A = 3, then the value of sin A is









  1. View Hint View Answer Discuss in Forum

    cosec²A – cot² A = 1
    (cosec A + cot A) (cosec A – cot A) = 1

    cosec A – cot A =
    1
    3

    cosec A + cot A = 3 On adding,
    2 cosec A =
    1
    + 3 =
    1 + 9
    =
    10
    333

    ⇒ cosec A =
    10
    =
    5
    3 × 23

    ∴ sin A =
    3
    5

    Correct Option: B

    cosec²A – cot² A = 1
    (cosec A + cot A) (cosec A – cot A) = 1

    cosec A – cot A =
    1
    3

    cosec A + cot A = 3 On adding,
    2 cosec A =
    1
    + 3 =
    1 + 9
    =
    10
    333

    ⇒ cosec A =
    10
    =
    5
    3 × 23

    ∴ sin A =
    3
    5



  1. The simplest value of sin²x + 2 tan²x – 2 sec²x + cos²x is









  1. View Hint View Answer Discuss in Forum

    sin² x + 2 tan² x – 2 sec² x + cos²x = sin²x + cos²x – 2 sec²x + 2 tan²x
    = 1 – 2 (sec²x – tan²x)
    = 1 – 2 = – 1
    [sec²x – tan²x = 1, sin² x + cos² x = 1]

    Correct Option: A

    sin² x + 2 tan² x – 2 sec² x + cos²x = sin²x + cos²x – 2 sec²x + 2 tan²x
    = 1 – 2 (sec²x – tan²x)
    = 1 – 2 = – 1
    [sec²x – tan²x = 1, sin² x + cos² x = 1]