Trigonometry


  1. The value of sec cos²A(sin A + cosA)+sin² A(sin A - cos A)(sec² A - cosec² A)
    cosec²A(sin A - cos A)sec² A(sin A + coa A)









  1. View Hint View Answer Discuss in Forum

    Expression

    cos²A(sinA + cosA)
    +
    sin²A(sinA - cosA)
    ×
    1
    -
    1
    cosec²A(sinA - cosA)sec²A(sinA + cosA)cos²Asin²A

    cos²A.sin²A (sinA + cosA)
    +
    sin²A.cos²A(sinA - cosA)
    ×
    sin²A - cos²A
    sinA - cosA(sinA + cosA)sin²A.cos²A

    =
    sinA + cosA
    +
    sinA - cosA
    (sin²A - cos²A)
    sinA - cosAsinA + cosA

    (sinA + cosA)² + (sinA - cosA)²
    (sin²A - cos²A)
    (sinA - cosA)(sinA + cosA)

    = 2(sin²A + cos²A) = 2

    Correct Option: C

    Expression

    cos²A(sinA + cosA)
    +
    sin²A(sinA - cosA)
    ×
    1
    -
    1
    cosec²A(sinA - cosA)sec²A(sinA + cosA)cos²Asin²A

    cos²A.sin²A (sinA + cosA)
    +
    sin²A.cos²A(sinA - cosA)
    ×
    sin²A - cos²A
    sinA - cosA(sinA + cosA)sin²A.cos²A

    =
    sinA + cosA
    +
    sinA - cosA
    (sin²A - cos²A)
    sinA - cosAsinA + cosA

    (sinA + cosA)² + (sinA - cosA)²
    (sin²A - cos²A)
    (sinA - cosA)(sinA + cosA)

    = 2(sin²A + cos²A) = 2


  1. The eliminant of q from x cosθ – y sin θ = 2 and x sin θ + y cos θ = 4 will give









  1. View Hint View Answer Discuss in Forum

    x cos θ – y sin θ = 2
    x sin θ + y cos θ = 4
    On squaring both the equations and adding
    x²cos²θ + y²sin²θ – 2 xy sin θ . cos θ + x²sin²θ + y² cos²θ + 2xy sin θ . cos θ
    = 4 + 16
    ⇒ x² (cos²θ + sin²θ ) + y²
    (sin²θ + cos²θ ) = 20
    ⇒ x² + y² = 20

    Correct Option: A

    x cos θ – y sin θ = 2
    x sin θ + y cos θ = 4
    On squaring both the equations and adding
    x²cos²θ + y²sin²θ – 2 xy sin θ . cos θ + x²sin²θ + y² cos²θ + 2xy sin θ . cos θ
    = 4 + 16
    ⇒ x² (cos²θ + sin²θ ) + y²
    (sin²θ + cos²θ ) = 20
    ⇒ x² + y² = 20



  1. If tan θ + cot θ = 2, then the value of tan2θ + cot2θ is









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ = 2
    On squaring both sides,
    (tan θ + cot θ )² = 4
    ⇒ tan²θ + cot²θ + 2tan θ . cot θ = 4
    ⇒ tan²θ + cot²θ = 4 – 2 = 2
    [tan θ .cot θ = 1]

    Correct Option: A

    tan θ + cot θ = 2
    On squaring both sides,
    (tan θ + cot θ )² = 4
    ⇒ tan²θ + cot²θ + 2tan θ . cot θ = 4
    ⇒ tan²θ + cot²θ = 4 – 2 = 2
    [tan θ .cot θ = 1]


  1. the value of sec θ1 + sin θ+cos θ- 2tan²θ is
    cos θ1 + sin θ









  1. View Hint View Answer Discuss in Forum

    Expression

    = sec θ1 + sin θ+cos θ- 2 tan²θ
    cos θ1 + sin θ

    =
    1 + sin² θ + 2sin θ + cos² θ
    - 2 tan² θ
    cos² θ(1 + sin θ)

    =
    2
    - 2 tan² θ
    cos² θ

    = 2 sec² θ - 2 tan² θ
    =2(sec² θ - tan² θ) = 2

    Correct Option: C

    Expression

    = sec θ1 + sin θ+cos θ- 2 tan²θ
    cos θ1 + sin θ

    =
    1 + sin² θ + 2sin θ + cos² θ
    - 2 tan² θ
    cos² θ(1 + sin θ)

    =
    2
    - 2 tan² θ
    cos² θ

    = 2 sec² θ - 2 tan² θ
    =2(sec² θ - tan² θ) = 2



  1. The value of 3 (sin x – cos x)4 + 6 (sin x + cos x)2+ 4 (sin6 x + cos6 x) is









  1. View Hint View Answer Discuss in Forum

    3 (sin x – cos x)4 + 6 (sinx + cos x)2 + 4 (sin6x + cos6 x)
    = 3 (sin2x + cos2x – 2 sinx . cosx)2 + 6(sin2x + cos2 x + 2 sinx . cosx ) + 4[(sin2x + cos2x)3 – 3 sin2x . cos2x (sin2x + cos2x)]
    = 3 (1 – 2 sinx cosx)² + 6(1 + 2 sinx . cosx) + 4(1 – 3 sin²x cos²x)
    = 3 (1 + sin²x . cos²x – 4 sinx cosx) + 6 (1+ 2 sinx cosx) + 4 (1 – 3 sin²x cos²x)
    = 3 + 6 + 4 = 13

    Correct Option: D

    3 (sin x – cos x)4 + 6 (sinx + cos x)2 + 4 (sin6x + cos6 x)
    = 3 (sin2x + cos2x – 2 sinx . cosx)2 + 6(sin2x + cos2 x + 2 sinx . cosx ) + 4[(sin2x + cos2x)3 – 3 sin2x . cos2x (sin2x + cos2x)]
    = 3 (1 – 2 sinx cosx)² + 6(1 + 2 sinx . cosx) + 4(1 – 3 sin²x cos²x)
    = 3 (1 + sin²x . cos²x – 4 sinx cosx) + 6 (1+ 2 sinx cosx) + 4 (1 – 3 sin²x cos²x)
    = 3 + 6 + 4 = 13