Trigonometry


  1. If cos2x + cos4x = 1, then tan2x + tan4x = ?









  1. View Hint View Answer Discuss in Forum

    cos2x + cos4x = 1
    ⇒ cos4x = 1 – cos2x = sin2x

    ∴ tan2x + tan4x =
    sin2x
    +
    sin4x
    cos2xcos4x

    ⇒ tan2x + tan4x =
    cos4x
    +
    sin4x
    cos2xsin2x

    Hence , tan2x + tan4x = cos2x + sin2x = 1

    Correct Option: B

    cos2x + cos4x = 1
    ⇒ cos4x = 1 – cos2x = sin2x

    ∴ tan2x + tan4x =
    sin2x
    +
    sin4x
    cos2xcos4x

    ⇒ tan2x + tan4x =
    cos4x
    +
    sin4x
    cos2xsin2x

    Hence , tan2x + tan4x = cos2x + sin2x = 1


  1. If cos 27° = x, the value of tan63° is









  1. View Hint View Answer Discuss in Forum

    cos 27° = x
    ⇒ cos (90° – 63°) = x
    ⇒ sin 63° = x
    ∴ cos 63° = √1 - sin² 63° = √1 - x²

    ∴ tan 63 =
    sin 63°
    =
    x
    cos 63° 1 - x²

    Correct Option: A

    cos 27° = x
    ⇒ cos (90° – 63°) = x
    ⇒ sin 63° = x
    ∴ cos 63° = √1 - sin² 63° = √1 - x²

    ∴ tan 63 =
    sin 63°
    =
    x
    cos 63° 1 - x²



  1. If tan (5x – 10°) = cot (5y + 20°), then the value of (x + y) is









  1. View Hint View Answer Discuss in Forum

    tan (90° – θ) = cotθ
    ∴ tan (5x – 10°) = cot (5y + 20°)
    ⇒ tan (5x – 10°) = tan {90° – (5y + 20°)}
    ⇒ 5x – 10° = 90° – (5y + 20°)
    ⇒ 5x – 10° = 90° – 5y – 20°
    ⇒ 5x + 5y = 70° + 10°
    ⇒ 5 (x + y) = 80°

    ⇒ x + y =
    80°
    = 16°
    5

    Correct Option: B

    tan (90° – θ) = cotθ
    ∴ tan (5x – 10°) = cot (5y + 20°)
    ⇒ tan (5x – 10°) = tan {90° – (5y + 20°)}
    ⇒ 5x – 10° = 90° – (5y + 20°)
    ⇒ 5x – 10° = 90° – 5y – 20°
    ⇒ 5x + 5y = 70° + 10°
    ⇒ 5 (x + y) = 80°

    ⇒ x + y =
    80°
    = 16°
    5


  1. If cos 20° = m and cos 70° = n, then the value of m2 + n2 is









  1. View Hint View Answer Discuss in Forum

    cos 20° = m and cos 70° = n
    ∴ m2 + n2 = cos2 20°+ cos2 70°
    = cos2 (90° – 70°) + cos2 70°
    ⇒ sin2 70° + cos2 70° = 1

    Correct Option: A

    cos 20° = m and cos 70° = n
    ∴ m2 + n2 = cos2 20°+ cos2 70°
    = cos2 (90° – 70°) + cos2 70°
    ⇒ sin2 70° + cos2 70° = 1



  1. The value of cos 1° cos 2°cos 3° ... cos 180° is









  1. View Hint View Answer Discuss in Forum

    ∵ cos 90° = 0
    ∴ cos1°.cos2°.... cos 180° = 0

    Correct Option: A

    ∵ cos 90° = 0
    ∴ cos1°.cos2°.... cos 180° = 0