Trigonometry


  1. If θ is a positive acute angle and tan 2θ tan 3θ = 1, then the value of [2 cos² (5θ / 2) – 1[ is









  1. View Hint View Answer Discuss in Forum

    tan2θ . tan3θ = 1

    ⇒ tan 3θ =
    1
    = cot 2θ
    tan 2θ

    ⇒ tan3θ = tan (90° – 2θ )
    ⇒ 3θ = 90° – 2θ ⇒ 5θ = 90°
    ⇒ θ = 18
    ∴ 2cos ²
    - 1 = 2 cos² 45° - 1
    2

    Correct Option: C

    tan2θ . tan3θ = 1

    ⇒ tan 3θ =
    1
    = cot 2θ
    tan 2θ

    ⇒ tan3θ = tan (90° – 2θ )
    ⇒ 3θ = 90° – 2θ ⇒ 5θ = 90°
    ⇒ θ = 18
    ∴ 2cos ²
    - 1 = 2 cos² 45° - 1
    2


  1. If cos²α + cos²β = 2, then the value of tan&3 α+ sin5 β is :









  1. View Hint View Answer Discuss in Forum

    cos²α + cos²β = 2
    ⇒ 1 – sin²α + 1 – sin²β = 2
    ⇒ sin²α + sin²β = 0
    ⇒ sin²α = 0 & sin²β = 0
    ⇒ sinα = sinβ = 0
    ⇒ α = β = 0
    ∴ tan3α + sin5β = 0

    Correct Option: B

    cos²α + cos²β = 2
    ⇒ 1 – sin²α + 1 – sin²β = 2
    ⇒ sin²α + sin²β = 0
    ⇒ sin²α = 0 & sin²β = 0
    ⇒ sinα = sinβ = 0
    ⇒ α = β = 0
    ∴ tan3α + sin5β = 0



  1. If tan2θ . tan 4θ = 1, then the value of tan 3θis









  1. View Hint View Answer Discuss in Forum

    tan 2θ =
    1
    = cot 4θ
    tan 4θ

    ⇒ tan 2θ = tan (90° – 4θ)
    ⇒ 2θ = 90° – 4θ
    ⇒ 6θ = 90° ⇒ θ = 15°
    ∴ tan 3θ = tan 45° = 1

    Correct Option: C

    tan 2θ =
    1
    = cot 4θ
    tan 4θ

    ⇒ tan 2θ = tan (90° – 4θ)
    ⇒ 2θ = 90° – 4θ
    ⇒ 6θ = 90° ⇒ θ = 15°
    ∴ tan 3θ = tan 45° = 1


  1. If sinθ + cosecθ = 2, then the value of sin5θ +cosec5θ when 0° ≤ θ ≤ 90°, is









  1. View Hint View Answer Discuss in Forum

    sinθ + cosecθ = 2

    sinθ =
    1
    = 2
    sinθ

    ⇒ sin² θ - 2sin θ + 1 = 0
    ⇒ (sin θ - 1)² = 0 ⇒ sin θ = 1
    ∴ sin5θ + cosec5θ = 1 + 1 = 2

    Correct Option: D

    sinθ + cosecθ = 2

    sinθ =
    1
    = 2
    sinθ

    ⇒ sin² θ - 2sin θ + 1 = 0
    ⇒ (sin θ - 1)² = 0 ⇒ sin θ = 1
    ∴ sin5θ + cosec5θ = 1 + 1 = 2



  1. If A = sin² θ + cos4θ, for any value of θ, then the value of A is









  1. View Hint View Answer Discuss in Forum

    When θ = 0°
    sin2θ + cos4θ = 1
    When θ = 45°,

    sin²θ + cos4θ =
    1
    +
    1
    =
    3

    244

    when θ = 30°,

    sin²θ + cos4θ =
    1
    +
    9
    416

    =
    4 + 9
    =
    13
    1616

    Hence, the value of
    A = sin2θ + cos4θ =
    13
    16

    Correct Option: B

    When θ = 0°
    sin2θ + cos4θ = 1
    When θ = 45°,

    sin²θ + cos4θ =
    1
    +
    1
    =
    3

    244

    when θ = 30°,

    sin²θ + cos4θ =
    1
    +
    9
    416

    =
    4 + 9
    =
    13
    1616

    Hence, the value of
    A = sin2θ + cos4θ =
    13
    16