Trigonometry


  1. The ratio of the length of a rod and its shadow is 1 : √3 . The angle of elevation of the sun is :









  1. View Hint View Answer Discuss in Forum


    AB
    =
    1
    BC3

    tanθ =
    AB
    =
    1
    BC3

    ⇒ tanθ = tan 30°
    ⇒ θ = 30°

    Correct Option: B


    AB
    =
    1
    BC3

    tanθ =
    AB
    =
    1
    BC3

    ⇒ tanθ = tan 30°
    ⇒ θ = 30°


  1. If the angle of elevation of the sun changes from 45° to 60°, then the length of the shadow of a pillar decreases by 10 m. The height of the pillar is :









  1. View Hint View Answer Discuss in Forum


    AB = Height of pillar = h metre (let)
    CD = 10 metre
    ∠ACB = 45°
    ∠ADB = 60°
    BD = x metre (let)
    From ∆ABC

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    x + 10

    ⇒ h = (x + 10) metre (i)
    From ∆ABD
    tan 60° =
    AB
    BD

    ⇒ √3 =
    h
    x

    ⇒ x =
    h
    metre (ii)
    3

    From equation (i),
    h =
    h
    + 10
    3

    ⇒ h -
    h
    = 10
    3

    3h - h
    = 10
    3

    ⇒ h(√3 - 1) = 10√3
    ⇒ h =
    10√3
    3- 1

    =
    10√3(√3+ 1)
    (√3- 1)(√3+ 1)

    =
    10√3(√3+ 1)
    3 - 1

    = 5√3 (√3 + 1)
    = 5 (3 + √3)metre

    Correct Option: D


    AB = Height of pillar = h metre (let)
    CD = 10 metre
    ∠ACB = 45°
    ∠ADB = 60°
    BD = x metre (let)
    From ∆ABC

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    x + 10

    ⇒ h = (x + 10) metre (i)
    From ∆ABD
    tan 60° =
    AB
    BD

    ⇒ √3 =
    h
    x

    ⇒ x =
    h
    metre (ii)
    3

    From equation (i),
    h =
    h
    + 10
    3

    ⇒ h -
    h
    = 10
    3

    3h - h
    = 10
    3

    ⇒ h(√3 - 1) = 10√3
    ⇒ h =
    10√3
    3- 1

    =
    10√3(√3+ 1)
    (√3- 1)(√3+ 1)

    =
    10√3(√3+ 1)
    3 - 1

    = 5√3 (√3 + 1)
    = 5 (3 + √3)metre



  1. TF is a tower with F on the ground. The angle of elevation of T from A is x° such that tan x° = (2 / 5) and AF = 200m. The angle of elevation of T from a nearer point B is y° with BF = 80m. The value of y° is









  1. View Hint View Answer Discuss in Forum


    TF = Tower = h metre
    ∠TAF = x° ; ∠TBF = y°,
    BF = 80 metre
    In ∆AFT,

    tan x° =
    TF
    AF

    2
    =
    h
    5200

    ⇒ h =
    2
    × 200
    5

    = 80 metre
    In ∆BFT
    tan y° =
    TF
    FB

    ⇒ tan y° =
    80
    = 1
    80

    ⇒ tan y° = tan 45°
    ⇒ y = 45°

    Correct Option: D


    TF = Tower = h metre
    ∠TAF = x° ; ∠TBF = y°,
    BF = 80 metre
    In ∆AFT,

    tan x° =
    TF
    AF

    2
    =
    h
    5200

    ⇒ h =
    2
    × 200
    5

    = 80 metre
    In ∆BFT
    tan y° =
    TF
    FB

    ⇒ tan y° =
    80
    = 1
    80

    ⇒ tan y° = tan 45°
    ⇒ y = 45°


  1. If sin A – cos A = (√3 - 1 / 2) , then the value of sin A . cos A is









  1. View Hint View Answer Discuss in Forum

    sinA – cosA =
    3 - 1
    2

    On squaring both sides,
    sin²A + cos²A – 2 sinA . cosA

    ⇒ 1 – 2 sinA cosA
    =
    1
    (4 - 2√3)
    4

    ⇒ 1 – 2 sinA cosA =
    2 - √3
    2

    ⇒ 2 – 4 sinA cosA = 2 – √3
    ⇒ 4 sinA . cosA = 2–2+ √3 = √3
    ⇒ sinA.cosA =
    3
    4

    Correct Option: C

    sinA – cosA =
    3 - 1
    2

    On squaring both sides,
    sin²A + cos²A – 2 sinA . cosA

    ⇒ 1 – 2 sinA cosA
    =
    1
    (4 - 2√3)
    4

    ⇒ 1 – 2 sinA cosA =
    2 - √3
    2

    ⇒ 2 – 4 sinA cosA = 2 – √3
    ⇒ 4 sinA . cosA = 2–2+ √3 = √3
    ⇒ sinA.cosA =
    3
    4



  1. The value of x in the equation









  1. View Hint View Answer Discuss in Forum

    tan²
    π
    - cos²
    π
    43

    = x sin
    π
    . cos
    π
    . tan
    π

    443


    ⇒ 1 -
    1
    = x ×
    3
    42

    4 - 1
    = x ×
    3
    42

    ⇒ x =
    3
    ×
    2
    =
    3

    432

    Correct Option: D

    tan²
    π
    - cos²
    π
    43

    = x sin
    π
    . cos
    π
    . tan
    π

    443


    ⇒ 1 -
    1
    = x ×
    3
    42

    4 - 1
    = x ×
    3
    42

    ⇒ x =
    3
    ×
    2
    =
    3

    432