-
Find the value of cot π - tan π - 2tan π 32 32 16
-
-
4cot π 8
- 0
-
2cot π 8
-
cot π 8
-
Correct Option: A
cot | - tan | - 2tan | ||||
32 | 32 | 16 |
= | - | - 2tan | ||||
sin(π / 32) | cos(π / 32) | 16 |
= | - 2tan | |||
sin(π / 32) × cos(π / 32) | 16 |
= | - 2tan | |||
2sin(π / 32).cos(π / 32) | 16 |
{ ∴ cos2θ - sin2θ = cos2θ }
= | - 2tan | |||
sin(π / 16) | 16 |
{∴ sin 2θ = 2sinθ . cosθ }
= 2 | - | |||||
sin(π / 16) | cos(π / 16) |
= 2 | ||||
sin(π / 16) . cos(π / 16) |
= | = 4cot | |||
sin(π / 8) | 8 |