Trigonometry


  1. In ∆ABC, ∠C = 90° and AB = c, BC = a, CA = b; then the value of (cosec B – cos A) is









  1. View Hint View Answer Discuss in Forum


    In ∆ABC, AB² = AC² + BC²
    ⇒ c² = a² + b² ........ (i)
    From ∆ABC,

    cosec B =
    AB
    =
    c
    ....... (ii)
    ACb

    cos A =
    AC
    =
    b
    ABc

    ∴ cosec B – cos A =
    c
    =
    b
    bc

    =
    c² - b²
    =
    bcbc

    Correct Option: C


    In ∆ABC, AB² = AC² + BC²
    ⇒ c² = a² + b² ........ (i)
    From ∆ABC,

    cosec B =
    AB
    =
    c
    ....... (ii)
    ACb

    cos A =
    AC
    =
    b
    ABc

    ∴ cosec B – cos A =
    c
    =
    b
    bc

    =
    c² - b²
    =
    bcbc


  1. If tan θ – cot θ = 0 and θ is positive acute angle, then the value of
    tan(θ + 15°)
    is
    tan(θ - 15°)









  1. View Hint View Answer Discuss in Forum

    tanθ – cotθ = 0
    ⇒ tanθ = cotθ
    ⇒ tanθ = tan (90° – θ)
    ⇒ θ = 90° – θ
    ⇒ 2θ = 90°
    ⇒ θ = 45°

    tan(θ + 15°)
    tan(θ - 15°)

    =
    tan(45° + 15°)
    =
    tan 60°
    tan(45° - 15°)tan 30°


    =
    3
    = √3 × √3 = 3
    (1 / √3)

    Correct Option: A

    tanθ – cotθ = 0
    ⇒ tanθ = cotθ
    ⇒ tanθ = tan (90° – θ)
    ⇒ θ = 90° – θ
    ⇒ 2θ = 90°
    ⇒ θ = 45°

    tan(θ + 15°)
    tan(θ - 15°)

    =
    tan(45° + 15°)
    =
    tan 60°
    tan(45° - 15°)tan 30°


    =
    3
    = √3 × √3 = 3
    (1 / √3)



  1. The value of cot 41°. cot 42° . cot 43°. cot 44°. cot 45° . cot 46° . cot 47° . cot 48° . cot 49°









  1. View Hint View Answer Discuss in Forum

    Expression = (cot 41° . cot 49°). (cot 42° . cot 48°) (cot 43° . cot 47°) . (cot 44° . cot 46°) . cot 45°
    = cot 41° . tan (90° – 49°) . cot 42° . tan (90° – 48°) . cot 43° . tan (90° – 47°) . cot 44° . tan (90° – 46°).1
    = (cot 41° . tan 41°) (cot 42° . tan 42°) . (cot 43° . tan 43°). (cot 44°
    . tan 44°) . 1 = 1
    [∵ tan (90° – θ) = cotθ; tanθ. cotθ = 1]

    Correct Option: A

    Expression = (cot 41° . cot 49°). (cot 42° . cot 48°) (cot 43° . cot 47°) . (cot 44° . cot 46°) . cot 45°
    = cot 41° . tan (90° – 49°) . cot 42° . tan (90° – 48°) . cot 43° . tan (90° – 47°) . cot 44° . tan (90° – 46°).1
    = (cot 41° . tan 41°) (cot 42° . tan 42°) . (cot 43° . tan 43°). (cot 44°
    . tan 44°) . 1 = 1
    [∵ tan (90° – θ) = cotθ; tanθ. cotθ = 1]


  1. If x = a sin θ – b cos θ, y = a cos θ + b sin θ, then which of the following is true?









  1. View Hint View Answer Discuss in Forum

    x = a sinθ – b cosθ --- (i)
    y = a cosθ + b sinθ - (ii)
    On squaring and adding both the equations,
    x² + y² = (a sinθ – b cosθ)² + (a cosθ + b sinθ)²
    = a² sin²θ + b² cos²θ – 2ab sinθ . cosθ + a² cos²θ + b² sin²θ + 2ab sinθ . cosθ
    = a² (sin²θ + cos²θ) + b² (cos²θ + sin²θ)
    = a² + b² [∵ sin²θ + cos²θ = 1]

    Correct Option: D

    x = a sinθ – b cosθ --- (i)
    y = a cosθ + b sinθ - (ii)
    On squaring and adding both the equations,
    x² + y² = (a sinθ – b cosθ)² + (a cosθ + b sinθ)²
    = a² sin²θ + b² cos²θ – 2ab sinθ . cosθ + a² cos²θ + b² sin²θ + 2ab sinθ . cosθ
    = a² (sin²θ + cos²θ) + b² (cos²θ + sin²θ)
    = a² + b² [∵ sin²θ + cos²θ = 1]



  1. If sec θ – tan θ =
    1
    , the value of sec θ . tan θ is
    3









  1. View Hint View Answer Discuss in Forum

    secθ – tanθ =
    1
    ....(i)
    3

    ∵ sec²θ – tan²θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) = 1
    ⇒ secθ + tanθ = 3 ....(ii)
    On adding equations (i) and (ii)
    2secθ = √3 +
    1
    3

    =
    3 + 1
    =
    4
    33

    ⇒ secθ =
    2
    3

    Again, by equation (ii) – (i),
    2 tanθ = √3 -
    2
    3

    =
    3 - 1
    =
    2
    33

    ⇒ tanθ =
    2
    3

    ∴ secθ . tanθ
    =
    2
    ×
    1
    =
    2

    333

    Correct Option: A

    secθ – tanθ =
    1
    ....(i)
    3

    ∵ sec²θ – tan²θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) = 1
    ⇒ secθ + tanθ = 3 ....(ii)
    On adding equations (i) and (ii)
    2secθ = √3 +
    1
    3

    =
    3 + 1
    =
    4
    33

    ⇒ secθ =
    2
    3

    Again, by equation (ii) – (i),
    2 tanθ = √3 -
    2
    3

    =
    3 - 1
    =
    2
    33

    ⇒ tanθ =
    2
    3

    ∴ secθ . tanθ
    =
    2
    ×
    1
    =
    2

    333