Trigonometry


  1. If sin θ + cos θ = √2 sin (90° – θ) then cot θ is equal to :









  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ = √2 sin (90° – θ)
    ⇒ sinθ + cosq = √2 cosθ
    ⇒ √2 cosθ – cosθ = sinθ
    ⇒ cosθ (√2) - 1 = sinθ

    cos θ
    =
    1
    sin θ2 - 1

    ⇒ cot θ
    1
    ×
    2 + 1
    2 - 12 + 1

    =
    2 + 1
    = √2 + 1
    2 - 1

    Correct Option: D

    sinθ + cosθ = √2 sin (90° – θ)
    ⇒ sinθ + cosq = √2 cosθ
    ⇒ √2 cosθ – cosθ = sinθ
    ⇒ cosθ (√2) - 1 = sinθ

    cos θ
    =
    1
    sin θ2 - 1

    ⇒ cot θ
    1
    ×
    2 + 1
    2 - 12 + 1

    =
    2 + 1
    = √2 + 1
    2 - 1


  1. The value of the following is :
    (tan 20°)²
    +
    (cot 20°)²
    + 2tan 15°. tan 45°. tan 75°
    (cosec 70°)²(sec 70°)²









  1. View Hint View Answer Discuss in Forum

    tan 20° = tan (90° – 70°) = cot 70°
    ∴ cot 20° = tan 70°
    tan 15° = tan (90° – 75°) = cot 75°
    ∴ Expression = cot² 70°. sin²70° + tan²70°. cos²70° + 2 cot 75°. tan 75°. tan 45°

    =
    cos² 70°
    . sin² 70° +
    sin² 70°
    sin² 70°cos² 70°

    cos² 70° + 2 × 1 × 1
    = cos²70° + sin²70° + 2 = 1 + 2 = 3
    [∵ sinθ . cosecθ = 1 ; cosθ. secθ = 1; tanθ . cotθ = 1]

    Correct Option: C

    tan 20° = tan (90° – 70°) = cot 70°
    ∴ cot 20° = tan 70°
    tan 15° = tan (90° – 75°) = cot 75°
    ∴ Expression = cot² 70°. sin²70° + tan²70°. cos²70° + 2 cot 75°. tan 75°. tan 45°

    =
    cos² 70°
    . sin² 70° +
    sin² 70°
    sin² 70°cos² 70°

    cos² 70° + 2 × 1 × 1
    = cos²70° + sin²70° + 2 = 1 + 2 = 3
    [∵ sinθ . cosecθ = 1 ; cosθ. secθ = 1; tanθ . cotθ = 1]



  1. The value of the following is
    sin 47°+cos 43°- 4cos²45°
    cos 43°sin 47°









  1. View Hint View Answer Discuss in Forum

    sin47° = sin(90° – 43°) = cos43°

    = 1 + 1 – 4 ×
    1
    = 2 – 2 = 0
    2

    Correct Option: B

    sin47° = sin(90° – 43°) = cos43°

    = 1 + 1 – 4 ×
    1
    = 2 – 2 = 0
    2


  1. If 0° < θ < 90° and cosecθ = cot²θ, then the value of the expression cosec4θ – 2cosec4θ + cot²θ is equal to:









  1. View Hint View Answer Discuss in Forum

    cosecθ = cot²θ
    ⇒ cosecθ = cosec²θ – 1
    ⇒ cosec²θ – cosecθ = 1 .....(i)
    Expression
    = cosec4θ – 2cosec3θ + cot²θ
    = cosec4θ – cosec3θ – cosec3θ + cosecθ
    = cosec²θ (cosec²θ – cosecθ) – cosecθ (cosec²θ–1)
    = cosec²θ – cosec²θ = 0

    Correct Option: B

    cosecθ = cot²θ
    ⇒ cosecθ = cosec²θ – 1
    ⇒ cosec²θ – cosecθ = 1 .....(i)
    Expression
    = cosec4θ – 2cosec3θ + cot²θ
    = cosec4θ – cosec3θ – cosec3θ + cosecθ
    = cosec²θ (cosec²θ – cosecθ) – cosecθ (cosec²θ–1)
    = cosec²θ – cosec²θ = 0



  1. If 4sin²θ – 1 = 0 and angle θ is less than 90°, the value of cos²θ + tan²θ is : (Take 0° < θ < 90°)









  1. View Hint View Answer Discuss in Forum

    4 sin²θ – 1 = 0
    ⇒ 4 sin²θ = 1

    ⇒ sin²θ =
    1
    4

    ⇒ sinθ =
    1
    (∵ θ < 90°)
    2

    ∴sinθ = sin30°
    ⇒ θ = 30°
    ∴ cos²θ + tan²θ = cos²30° + tan²30°

    =
    9 + 4
    =
    13
    1212

    Correct Option: B

    4 sin²θ – 1 = 0
    ⇒ 4 sin²θ = 1

    ⇒ sin²θ =
    1
    4

    ⇒ sinθ =
    1
    (∵ θ < 90°)
    2

    ∴sinθ = sin30°
    ⇒ θ = 30°
    ∴ cos²θ + tan²θ = cos²30° + tan²30°

    =
    9 + 4
    =
    13
    1212