Trigonometry


  1. Find the value of 1 – 2 sin²θ + sin4θ.









  1. View Hint View Answer Discuss in Forum

    1 – 2 sin²θ + sin4 θ
    = (1 – sin²θ)² = (cos²θ)² = cos4θ

    Correct Option: B

    1 – 2 sin²θ + sin4 θ
    = (1 – sin²θ)² = (cos²θ)² = cos4θ


  1. The simplest value of cot 9° cot 27° cot 63° cot 81° is









  1. View Hint View Answer Discuss in Forum

    Expression
    = cot 9°. cot 27°. cot 63° . cot 81°
    = cot 9°. cot 27°. cot (90° – 27°) . cot (90° – 9°)
    = cot 9° . cot 27° . tan 27° . tan 9° [tan (90° – θ)
    = cot θ; cot (90° – θ) = tan θ ]
    = cot 9° . tan 9° . cot 27° tan 27°
    = 1 [tan θ . cot θ = 1]

    Correct Option: B

    Expression
    = cot 9°. cot 27°. cot 63° . cot 81°
    = cot 9°. cot 27°. cot (90° – 27°) . cot (90° – 9°)
    = cot 9° . cot 27° . tan 27° . tan 9° [tan (90° – θ)
    = cot θ; cot (90° – θ) = tan θ ]
    = cot 9° . tan 9° . cot 27° tan 27°
    = 1 [tan θ . cot θ = 1]



  1. If (1 + sin A) (1 + sin B) (1 + sin C) = (1 – sin A) (1 – sin B) (1 – sin C), 0 < A, B, C < (π / 2) then each side is equal to









  1. View Hint View Answer Discuss in Forum

    (1 + sin A) (1 + sin B) (1 + sin C) = (1 – sin A) . (1 – sin B) (1 – sin C) = x (Let)
    ∴ x . x = (1 + sin A) (1 + sin B) (1 + sin C) (1 – sin A) (1 – sin B) (1 – sin C)
    ⇒ x² = (1 – sin² A) (1 – sin² B) (1 – sin² C)
    ⇒ x² = cos²A . cos²B . cos²C
    ⇒x = ± cos A . cos B . cos C

    ∵ 0 < A, B, C <
    π
    2

    ∴ x = cos A . cos B . cos C

    Correct Option: B

    (1 + sin A) (1 + sin B) (1 + sin C) = (1 – sin A) . (1 – sin B) (1 – sin C) = x (Let)
    ∴ x . x = (1 + sin A) (1 + sin B) (1 + sin C) (1 – sin A) (1 – sin B) (1 – sin C)
    ⇒ x² = (1 – sin² A) (1 – sin² B) (1 – sin² C)
    ⇒ x² = cos²A . cos²B . cos²C
    ⇒x = ± cos A . cos B . cos C

    ∵ 0 < A, B, C <
    π
    2

    ∴ x = cos A . cos B . cos C


  1. The value of q, which satisfies the equation tan²θ + 3 = 3 secθ, 0° ≤ θ < 90° is









  1. View Hint View Answer Discuss in Forum

    tan²θ + 3 = 3 sec θ
    ⇒ sec²θ – 1 + 3 = 3 sec θ
    ⇒ sec²θ – 3 sec θ + 2 = 0
    ⇒ sec²θ – 2 sec θ – sec θ + 2 = 0
    ⇒ secθ (sec θ – 2) – 1 (sec θ – 2) = 0
    ⇒ (sec θ – 2) (sec θ – 1) = 0
    ⇒ secθ = 2 or 1
    ⇒ θ = 60° or 0°.

    Correct Option: D

    tan²θ + 3 = 3 sec θ
    ⇒ sec²θ – 1 + 3 = 3 sec θ
    ⇒ sec²θ – 3 sec θ + 2 = 0
    ⇒ sec²θ – 2 sec θ – sec θ + 2 = 0
    ⇒ secθ (sec θ – 2) – 1 (sec θ – 2) = 0
    ⇒ (sec θ – 2) (sec θ – 1) = 0
    ⇒ secθ = 2 or 1
    ⇒ θ = 60° or 0°.



  1. If sin θ = 0.7, then cos q, 0 ≤ θ < 90°, is









  1. View Hint View Answer Discuss in Forum

    sin θ = 0.7
    ∴ cos θ
    = √1 - sin² θ= √1 - (0.7)²
    = √1 - 0.49= √0.51

    Correct Option: C

    sin θ = 0.7
    ∴ cos θ
    = √1 - sin² θ= √1 - (0.7)²
    = √1 - 0.49= √0.51