Trigonometry


  1. If x = a sec θ and y = b tan θ then
    -
    = ?









  1. View Hint View Answer Discuss in Forum

    x = a sec θ

    x
    = sec θ
    a

    Again, y = b tan θ
    y
    = tan θ
    b

    -

    = sec² θ – tan² θ = 1

    Correct Option: A

    x = a sec θ

    x
    = sec θ
    a

    Again, y = b tan θ
    y
    = tan θ
    b

    -

    = sec² θ – tan² θ = 1


  1. The value of sin²1° + sin²2° + sin²3° + .....+ sin²89° is









  1. View Hint View Answer Discuss in Forum

    sin² 1° + sin² 2° + sin² 3° + ..... + sin² 89°
    = (sin² 1° + sin² 89°) + (sin² 2° + sin² 88°) + .... to 44 terms + sin² 45°
    = (sin² 1° + sin² (90° – 1°) + (sin² 2° + sin² (90° – 2°) +....to 44

    terms +
    1
    ²
    2

    = (sin² 1° + cos² 1°) + (sin² 2° + cos² 2°) + ....to 44 terms +
    1
    [sin²θ + cos²θ = 1]
    2

    = 44 +
    1
    = 44
    1
    22

    Correct Option: D

    sin² 1° + sin² 2° + sin² 3° + ..... + sin² 89°
    = (sin² 1° + sin² 89°) + (sin² 2° + sin² 88°) + .... to 44 terms + sin² 45°
    = (sin² 1° + sin² (90° – 1°) + (sin² 2° + sin² (90° – 2°) +....to 44

    terms +
    1
    ²
    2

    = (sin² 1° + cos² 1°) + (sin² 2° + cos² 2°) + ....to 44 terms +
    1
    [sin²θ + cos²θ = 1]
    2

    = 44 +
    1
    = 44
    1
    22



  1. The value of
    cos3θ + sin3θ
    -
    cos3θ - sin3θ
    is equal to
    cosθ + sinθcosθ - sinθ









  1. View Hint View Answer Discuss in Forum

    cos3θ + sin3θ
    +
    cos3θ - sin3θ
    cos θ + sinθcos θ - sinθ

    =
    (cos θ + sin θ)(cos²θ + sin²θ - cos θ . sin θ)
    cos θ + sin θ

    =
    (cos θ - sin θ)(cos²θ + sin²θ + cos θ . sin θ)
    cos θ - sin θ

    = cos²θ + sin²θ – cosθ . sinθ + cos²θ + sin²θ + cosθ . sinθ
    = 1 + 1 = 2

    Correct Option: C

    cos3θ + sin3θ
    +
    cos3θ - sin3θ
    cos θ + sinθcos θ - sinθ

    =
    (cos θ + sin θ)(cos²θ + sin²θ - cos θ . sin θ)
    cos θ + sin θ

    =
    (cos θ - sin θ)(cos²θ + sin²θ + cos θ . sin θ)
    cos θ - sin θ

    = cos²θ + sin²θ – cosθ . sinθ + cos²θ + sin²θ + cosθ . sinθ
    = 1 + 1 = 2


  1. If sin 17° = (x / y) , then sec 17° – sin 73° is equal to









  1. View Hint View Answer Discuss in Forum

    sin 17° =
    x
    y

    sin 73° = sin (90° – 17°)
    = cos 17°
    ∴ cos 17° = √1 - sin² 17°

    =
    y² - x²
    y

    ∴ sec 17° =
    y
    y² - x²

    ∴ sec 17° – sin 73°
    = sec 17° – cos 17°
    y
    -
    y² - x²
    y² - x²y

    =
    y² - (y² - x²)
    y√y² - x²

    =
    y² - y² + x²
    y√y² - x²

    =
    y
    y√y² - x²

    Correct Option: D

    sin 17° =
    x
    y

    sin 73° = sin (90° – 17°)
    = cos 17°
    ∴ cos 17° = √1 - sin² 17°

    =
    y² - x²
    y

    ∴ sec 17° =
    y
    y² - x²

    ∴ sec 17° – sin 73°
    = sec 17° – cos 17°
    y
    -
    y² - x²
    y² - x²y

    =
    y² - (y² - x²)
    y√y² - x²

    =
    y² - y² + x²
    y√y² - x²

    =
    y
    y√y² - x²



  1. If θ is a positive acute angle and cosec θ + cot θ = √3 , then the value of cosec θ is









  1. View Hint View Answer Discuss in Forum

    cosecθ + cotθ = 3 ...(i)
    cosec²θ – cot²θ = 1
    ⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1

    ⇒ cosecθ - cotθ =
    1
    ....(ii)
    3

    ∴ cosecθ + cotθ + cosecθ – cotθ = √3 +
    1
    3

    ⇒ 2 cosecθ =
    3 + 1
    3

    ⇒ cosecθ =
    4
    =
    2
    2√33


    Correct Option: C

    cosecθ + cotθ = 3 ...(i)
    cosec²θ – cot²θ = 1
    ⇒ (cosecθ + cotθ) (cosecθ – cotθ) = 1

    ⇒ cosecθ - cotθ =
    1
    ....(ii)
    3

    ∴ cosecθ + cotθ + cosecθ – cotθ = √3 +
    1
    3

    ⇒ 2 cosecθ =
    3 + 1
    3

    ⇒ cosecθ =
    4
    =
    2
    2√33