Trigonometry


  1. If sinθ + cosecθ = 2, then value of sin100θ + cosec100θ is equal to :









  1. View Hint View Answer Discuss in Forum

    sinθ + cosecθ = 2

    ⇒ sin θ +
    1
    = 2
    sin θ

    ⇒ sin2θ – 2 sinθ + 1 = 0
    ⇒ (sinθ – 1) = 0
    ⇒ sinθ = 1 ⇒ cosecθ = 1
    ∴ sin100θ + cosec100θ
    = 1+ 1 = 2

    Correct Option: B

    sinθ + cosecθ = 2

    ⇒ sin θ +
    1
    = 2
    sin θ

    ⇒ sin2θ – 2 sinθ + 1 = 0
    ⇒ (sinθ – 1) = 0
    ⇒ sinθ = 1 ⇒ cosecθ = 1
    ∴ sin100θ + cosec100θ
    = 1+ 1 = 2


  1. The simplified value of (see x sec y + tan x tan y)² – (sex x tan y + tan x sec y)² is :









  1. View Hint View Answer Discuss in Forum

    (secx . secy + tanx . tany)² – (sec x . tan y + tan x . sec y)²
    = sec² x . sec² y + tan² x . tan²y + 2 sec x . sec y . tan x . tan y – sec² x . tan² y – tan² x . sec²y – 2 sec x . sec y . tan x . tan y
    = sec² x . sec²y + tan²x . tan² y – sec² x . tan²y – tan² x . sec²y
    = sec²x . sec²y – sec²x . tan²y – tan²x . sec²y + tan² x . tan²y
    = sec²x (sec²y – tan²y) – tan²x (sec²y – tan²y)
    = sec²x – tan²x = 1

    Correct Option: D

    (secx . secy + tanx . tany)² – (sec x . tan y + tan x . sec y)²
    = sec² x . sec² y + tan² x . tan²y + 2 sec x . sec y . tan x . tan y – sec² x . tan² y – tan² x . sec²y – 2 sec x . sec y . tan x . tan y
    = sec² x . sec²y + tan²x . tan² y – sec² x . tan²y – tan² x . sec²y
    = sec²x . sec²y – sec²x . tan²y – tan²x . sec²y + tan² x . tan²y
    = sec²x (sec²y – tan²y) – tan²x (sec²y – tan²y)
    = sec²x – tan²x = 1



  1. If sec²θ + tan²θ = 7, then the value of θ when 0° ≤ θ ≤ 90°, is









  1. View Hint View Answer Discuss in Forum

    sec²θ + tan²θ = 7
    ⇒ 1 + tan²θ + tan²θ = 7
    ⇒ 2 tan²θ = 7 – 1 = 6
    ⇒ tan²θ = 3 ⇒ tanθ = 3
    ⇒ θ = 60°

    Correct Option: A

    sec²θ + tan²θ = 7
    ⇒ 1 + tan²θ + tan²θ = 7
    ⇒ 2 tan²θ = 7 – 1 = 6
    ⇒ tan²θ = 3 ⇒ tanθ = 3
    ⇒ θ = 60°


  1. If
    sin θ + cos θ
    = 3, then the value of sin4θ – cos4θ is
    sin θ - cos θ









  1. View Hint View Answer Discuss in Forum

    sin θ + cos θ
    = 3
    sin θ + cos θ

    ⇒ sinθ + cosθ = 3sinθ – 3 cosθ
    ⇒ 4cosθ = 2 sinθ ⇒ tanθ = 2
    ∴ sin4θ – cos4θ
    = (sin²θ + cos²θ) (sin²θ – cos²θ)
    = sin²θ– cos²θ
    = cos²θ (tan² θ – 1)
    =
    tan²θ - 1
    ²θ

    =
    tan²θ - 1
    =
    4 - 1
    =
    3

    1 + tan²θ1 + 45

    Correct Option: C

    sin θ + cos θ
    = 3
    sin θ + cos θ

    ⇒ sinθ + cosθ = 3sinθ – 3 cosθ
    ⇒ 4cosθ = 2 sinθ ⇒ tanθ = 2
    ∴ sin4θ – cos4θ
    = (sin²θ + cos²θ) (sin²θ – cos²θ)
    = sin²θ– cos²θ
    = cos²θ (tan² θ – 1)
    =
    tan²θ - 1
    ²θ

    =
    tan²θ - 1
    =
    4 - 1
    =
    3

    1 + tan²θ1 + 45



  1. If 2cosθ – sinθ = (1 / √2) , (0° < q < 90°) the value of 2 sinθ + cosθ is









  1. View Hint View Answer Discuss in Forum

    2 cosθ – sinθ =
    1
    2

    2sinθ + cosθ = x (Let)
    On squaring and adding,
    4cos²θ + sin²θ – 4 sinθ . cosθ + 4 sin²θ + cos²θ+ 4 sinθ.cosθ
    =
    1
    2

    1
    + x² = 5
    2

    ⇒x² = 5 -
    1
    =
    9
    ⇒ x =
    3

    222

    Correct Option: C

    2 cosθ – sinθ =
    1
    2

    2sinθ + cosθ = x (Let)
    On squaring and adding,
    4cos²θ + sin²θ – 4 sinθ . cosθ + 4 sin²θ + cos²θ+ 4 sinθ.cosθ
    =
    1
    2

    1
    + x² = 5
    2

    ⇒x² = 5 -
    1
    =
    9
    ⇒ x =
    3

    222