Trigonometry


  1. The two banks of a canal are straight and parallel. A, B, C are three persons of whom A stands on one bank and B and C on the opposite banks. B finds the angle ABC is 30°, while C finds that the angle ACB 60°. If B and C are 100 metres apart, the breadth of the canal is









  1. View Hint View Answer Discuss in Forum


    BD = x metre (let)
    ∴ CD = (100 – x) metre
    AD ⊥ BC; AD = y metre
    From ∆ ABD,

    tan 30° =
    AD
    BD

    1
    =
    y
    3x

    ⇒ x = √3 y
    From ∆ACD ....(i)
    tan 60° =
    y
    100 - x

    ⇒ √3 =
    y
    100 - x

    ⇒ y = 100 √3 - √3 x
    ⇒ y = 100 √3 - √3 × √3 y
    ⇒ y = 100 √3 - 3y
    7rArr; 4y = 100 √3
    ⇒ y = 25 √3 metre

    Correct Option: C


    BD = x metre (let)
    ∴ CD = (100 – x) metre
    AD ⊥ BC; AD = y metre
    From ∆ ABD,

    tan 30° =
    AD
    BD

    1
    =
    y
    3x

    ⇒ x = √3 y
    From ∆ACD ....(i)
    tan 60° =
    y
    100 - x

    ⇒ √3 =
    y
    100 - x

    ⇒ y = 100 √3 - √3 x
    ⇒ y = 100 √3 - √3 × √3 y
    ⇒ y = 100 √3 - 3y
    7rArr; 4y = 100 √3
    ⇒ y = 25 √3 metre


  1. The base of a triangle is 12 √3 cm and two angles at the base are 30° and 60° respectively. The altitude of the triangle is









  1. View Hint View Answer Discuss in Forum


    2√3cm.
    BD = x cm. (let)
    ∴ CD = (12√3 - x) cm.
    ∠ADB = ∠ADC = 90°
    From ∆ ABD,

    tan 30° =
    AD
    BD

    1
    =
    AD
    3BD

    ⇒ AD =
    x
    ....(i)
    3

    From ∆ ACD,
    tan 60 ° =
    AD
    CD

    ⇒ √3 =
    AD
    12√3 - x

    ⇒ AD = √3 (12 √3 - x)
    = 36 - √3 x ....(ii)
    ∴ x =
    36 -√3 x
    3

    ⇒ x = 36 √3 * 3x
    ⇒ 4x = 36 √3
    ⇒ x =
    36 √3
    = 9 √3
    4

    ∴ AD =
    x
    =
    9√3
    = 9 cm.
    33

    Correct Option: D


    2√3cm.
    BD = x cm. (let)
    ∴ CD = (12√3 - x) cm.
    ∠ADB = ∠ADC = 90°
    From ∆ ABD,

    tan 30° =
    AD
    BD

    1
    =
    AD
    3BD

    ⇒ AD =
    x
    ....(i)
    3

    From ∆ ACD,
    tan 60 ° =
    AD
    CD

    ⇒ √3 =
    AD
    12√3 - x

    ⇒ AD = √3 (12 √3 - x)
    = 36 - √3 x ....(ii)
    ∴ x =
    36 -√3 x
    3

    ⇒ x = 36 √3 * 3x
    ⇒ 4x = 36 √3
    ⇒ x =
    36 √3
    = 9 √3
    4

    ∴ AD =
    x
    =
    9√3
    = 9 cm.
    33



  1. A pole stands vertically, inside a scalene triangular park ABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in ∆ ABC, the foot of the pole is at the









  1. View Hint View Answer Discuss in Forum


    AP = CP = BP
    It is possible only when
    OA = OB = OC i.e. radii of circum circle. or, (circumference)

    Correct Option: B


    AP = CP = BP
    It is possible only when
    OA = OB = OC i.e. radii of circum circle. or, (circumference)


  1. If
    sin θ + cos θ
    =
    5
    , the value of
    tan² θ + 1
    is
    sin θ - cos θ4tan² θ - 1









  1. View Hint View Answer Discuss in Forum

    =
    sin θ + cos θ
    =
    5
    sin θ - cos θ4


    tan θ + 1
    =
    5
    tan θ - 14

    ⇒ 4 tanθ + 4 = 5 tanθ – 5
    ⇒ tanθ = 9
    2tan θ
    =
    5 + 4
    25 - 4

    (By componendo and dividendo)
    tan²θ + 1
    =
    (9)² + 1
    =
    81 + 1

    tan²θ - 1(9)² - 181 - 1

    =
    82
    =
    41
    8040

    Correct Option: C

    =
    sin θ + cos θ
    =
    5
    sin θ - cos θ4


    tan θ + 1
    =
    5
    tan θ - 14

    ⇒ 4 tanθ + 4 = 5 tanθ – 5
    ⇒ tanθ = 9
    2tan θ
    =
    5 + 4
    25 - 4

    (By componendo and dividendo)
    tan²θ + 1
    =
    (9)² + 1
    =
    81 + 1

    tan²θ - 1(9)² - 181 - 1

    =
    82
    =
    41
    8040



  1. The numerical value of









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    1 + sin θ
    .
    1 - sinθ
    cosθcosθ

    =
    1 - sin² θ
    =
    cos² θ
    = 1
    cos² θcos² θ

    Correct Option: C

    Expression

    =
    1 + sin θ
    .
    1 - sinθ
    cosθcosθ

    =
    1 - sin² θ
    =
    cos² θ
    = 1
    cos² θcos² θ