Home » Aptitude » Trigonometry » Question
  1. The elevation of the top of a tower from a point on the ground is 45°. On travelling 60 m from the point towards the tower, the elevation of the top becomes 60°. The height of the tower (in metres) is
    1. 30
    2. 30(3 - √3)
    3. 30 (3 + √3)
    4. 30 √3
Correct Option: C


AB = tower = h metre
∠ACB = 45°, ∠ADB = 60°
CD = 60 metre] BD = x metre
From ∆ABC,

tan 45° =
AB
BC

⇒ 1 =
h
x + 60

⇒ h = x + 60 ....................(i)
From ∆ABD
tan 60° =
AB
BD

⇒ √3 =
h
x

⇒ h = √3x
⇒ h = √3(h - 60)
⇒ √3h - h= 60√3
⇒ h(√3 - 1) = 60√3
⇒ h =
60√3
=
60√3(√3 + 1)
3 - 1(√3 - 1)(√3 + 1)

= 30√3(√3 + 1)
= 30(3 + √3) metre



Your comments will be displayed only after manual approval.