Home » Aptitude » Trigonometry » Question
  1. If the angle of elevation of the sun changes from 45° to 60°, then the length of the shadow of a pillar decreases by 10 m. The height of the pillar is :
    1. 5 (3 - √3) metre
    2. 5 (√3 + 1) metre
    3. 15 √3 + 1 metre
    4. 5 (3 + √3) metre
Correct Option: D


AB = Height of pillar = h metre (let)
CD = 10 metre
∠ACB = 45°
∠ADB = 60°
BD = x metre (let)
From ∆ABC

tan 45° =
AB
BC

⇒ 1 =
h
x + 10

⇒ h = (x + 10) metre (i)
From ∆ABD
tan 60° =
AB
BD

⇒ √3 =
h
x

⇒ x =
h
metre (ii)
3

From equation (i),
h =
h
+ 10
3

⇒ h -
h
= 10
3

3h - h
= 10
3

⇒ h(√3 - 1) = 10√3
⇒ h =
10√3
3- 1

=
10√3(√3+ 1)
(√3- 1)(√3+ 1)

=
10√3(√3+ 1)
3 - 1

= 5√3 (√3 + 1)
= 5 (3 + √3)metre



Your comments will be displayed only after manual approval.