Number System
- If n is a whole number greater than 1, then n2(n2 – 1) is always divisible by :
-
View Hint View Answer Discuss in Forum
n2(n2–1) = n2 (n + 1) (n – 1)
Now, we put values n = 2, 3..... When n = 2
∴ n2(n2 –1) = 4 × 3 × 1 = 12, which is a multiple of 12Correct Option: B
n2(n2–1) = n2 (n + 1) (n – 1)
Now, we put values n = 2, 3..... When n = 2
∴ n2(n2 –1) = 4 × 3 × 1 = 12, which is a multiple of 12
When n = 3.
n2(n2 –1) = 9 × 4 × 2 = 72,
which is also a multiple of 12. etc.
- Both the end digits of a 99 digit number N are 2. N is divisible by 11, then all the middle digits are :
-
View Hint View Answer Discuss in Forum
A number is divisible by 11 if the difference of the sum of digits at odd and even places be either zero or multiple of 11.
Correct Option: D
A number is divisible by 11 if the difference of the sum of digits at odd and even places be either zero or multiple of 11. If the middle digit be 4, then 24442 or 244442 etc are divisible by 11.
- If the number 4 8 3 2 7 * 8 is divisible by 11, then the missing digit (*) is
-
View Hint View Answer Discuss in Forum
A number is divisible by 11, if the difference of sum of its digits at odd places and the sum of its digits at even places is either 0 or a number divisible by 11.
Correct Option: D
A number is divisible by 11, if the difference of sum of its digits at odd places and the sum of its digits at even places is either 0 or a number divisible by 11.
Difference
- If 78*3945 is divisible by 11, where * is a digit, then * is equal to
-
View Hint View Answer Discuss in Forum
A number is divisible by 11, if the difference of the sum of its digits at odd places and the sum of its digits of even places, is either 0 or a number divisible by 11.
∴ (5 + 9 + * + 7) – (4 + 3 + 8) = 0 or multiple of 11Correct Option: D
A number is divisible by 11, if the difference of the sum of its digits at odd places and the sum of its digits of even places, is either 0 or a number divisible by 11.
∴ (5 + 9 + * + 7) – (4 + 3 + 8) = 0 or multiple of 11
⇒ 21 + * – 15
∴ * + 6 = a multiple of 11
∴ * = 5
- If 5432*7 is divisible by 9, then the digit in place of * is :
-
View Hint View Answer Discuss in Forum
A number is divisible by 9, if sum of its digits is divisible by 9.
Let the number be p.
⇒ 5 + 4 + 3 + 2 + p + 7Correct Option: C
A number is divisible by 9, if sum of its digits is divisible by 9.
Let the number be p.
⇒ 5 + 4 + 3 + 2 + p + 7
⇒ 21 + p
⇒ 21 + 6 = 27, which is divisible by 9.
∴ p = 6
Therefore , the digit in place of * is 6 .