Trigonometry


  1. The angle of elevation of an aeroplane from a point A on the ground is 60°. After a straight flight of the plane for 30 seconds, the angle of elevation becomes 30°. If the palne flies at a constant height of 3600√3 metre, what is the speed of plane?









  1. View Hint View Answer Discuss in Forum


    P and Q = Positions of plane
    ∠PAB = 60°, ∠QAB = 30°, PB = 3600√3 metre
    In ∆ABP,

    tan 60° =
    BP
    AB

    ⇒ √3 =
    3600√3
    AB

    ⇒ AB = 3600 metre
    In ∆ACQ,
    tan 30° =
    CQ
    AC

    1
    =
    3600√3
    3AC

    ⇒ AC = 3600 × 3 = 10800 metre
    ∴ PQ = BC = AC – AB = 10800 – 3600 = 7200 metre
    This distance is covered in 30 seconds.
    ∴ Speed of plane =
    7200
    = 240 m/sec.
    30

    = 240 ×
    18
    5
    = 240
    = 864 kmph

    Correct Option: A


    P and Q = Positions of plane
    ∠PAB = 60°, ∠QAB = 30°, PB = 3600√3 metre
    In ∆ABP,

    tan 60° =
    BP
    AB

    ⇒ √3 =
    3600√3
    AB

    ⇒ AB = 3600 metre
    In ∆ACQ,
    tan 30° =
    CQ
    AC

    1
    =
    3600√3
    3AC

    ⇒ AC = 3600 × 3 = 10800 metre
    ∴ PQ = BC = AC – AB = 10800 – 3600 = 7200 metre
    This distance is covered in 30 seconds.
    ∴ Speed of plane =
    7200
    = 240 m/sec.
    30

    = 240 ×
    18
    5
    = 240
    = 864 kmph


  1. sin 75° + sin 15° can be expressed as









  1. View Hint View Answer Discuss in Forum

    sin 75° + sin 15° = 2 sin

    =
    75° + 15°
    . cos
    75° - 15°
    22

    ∵ sinC + sinD
    = 2sin
    C + D
    . cos
    C - D
    22

    = 2 sin 45° . cos 30°
    = 2 .
    1
    .
    3
    22

    3/2

    Correct Option: D

    sin 75° + sin 15° = 2 sin

    =
    75° + 15°
    . cos
    75° - 15°
    22

    ∵ sinC + sinD
    = 2sin
    C + D
    . cos
    C - D
    22

    = 2 sin 45° . cos 30°
    = 2 .
    1
    .
    3
    22

    3/2



  1. What will be the value of 2 cos 45° × sin 15°









  1. View Hint View Answer Discuss in Forum

    We know that,
    2 cosA sinB = sin(A + B) – sin(A – B)
    ⇒ 2 cos 45° sin 15°
    = sin (45° + 15°) – sin (45° – 15°)
    = sin 60° – sin 30°

    =
    3
    -
    1
    22

    =
    3 - 1
    1

    Correct Option: C

    We know that,
    2 cosA sinB = sin(A + B) – sin(A – B)
    ⇒ 2 cos 45° sin 15°
    = sin (45° + 15°) – sin (45° – 15°)
    = sin 60° – sin 30°

    =
    3
    -
    1
    22

    =
    3 - 1
    1


  1. The value of sin 22
    will be
    2










  1. View Hint View Answer Discuss in Forum

    We know that,
    cos2A = 1 – 2 sin²A

    ⇒ cosA = 1 – 2 sin²
    A
    2

    Let A = 45°
    ⇒ cos 45° = 1 – 2 sin²
    45°
    2

    ⇒ 2 sin² 22
    = 1 – cos 45°
    2

    ⇒ 2 sin² 22
    = 1 –
    1
    22

    ⇒ 2 sin² 22
    =
    2 - 1
    22

    ⇒ 2 sin² 22
    =
    2 - 1
    22√2

    ⇒ 2 sin² 22
    = √
    2 - 1
    22√2

    Correct Option: D

    We know that,
    cos2A = 1 – 2 sin²A

    ⇒ cosA = 1 – 2 sin²
    A
    2

    Let A = 45°
    ⇒ cos 45° = 1 – 2 sin²
    45°
    2

    ⇒ 2 sin² 22
    = 1 – cos 45°
    2

    ⇒ 2 sin² 22
    = 1 –
    1
    22

    ⇒ 2 sin² 22
    =
    2 - 1
    22

    ⇒ 2 sin² 22
    =
    2 - 1
    22√2

    ⇒ 2 sin² 22
    = √
    2 - 1
    22√2



  1. The value of
    cosα + cosβ
    will be
    sinα + sinβ










  1. View Hint View Answer Discuss in Forum

    cosα + cosβ
    sinα + sinβ

    = 2.cos
    α + β
    cos
    α - β
    22
    2.sin
    α + β
    sin
    α - β
    22

    = cos
    α + β
    2
    sin
    α + β
    2

    = cot
    α + β
    2

    Correct Option: B

    cosα + cosβ
    sinα + sinβ

    = 2.cos
    α + β
    cos
    α - β
    22
    2.sin
    α + β
    sin
    α - β
    22

    = cos
    α + β
    2
    sin
    α + β
    2

    = cot
    α + β
    2