Trigonometry


  1. If cosx = –
    3
    and p < x <
    , then the value of sin 2x will be
    52









  1. View Hint View Answer Discuss in Forum

    Here,

    cosx = –
    3
    and p < x <
    52

    ⇒ x lies in third quadrant, and we know that in third quadrant only tan and cot are positive.
    Consider right angled ∆ABC,

    Using pythagoras theorem,
    AC² = AB² + BC²
    ⇒ 5² = (–3)² + BC²
    16 = BC²
    ⇒ BC = 4
    We know that,
    sin2A = 2sinA × cosA
    ⇒ sin2x = 2 × sinx× cosx
    = 2 ×
    - 4
    ×
    - 3
    55

    =
    24
    25

    ∵ Here, sinq is –ve

    Correct Option: C

    Here,

    cosx = –
    3
    and p < x <
    52

    ⇒ x lies in third quadrant, and we know that in third quadrant only tan and cot are positive.
    Consider right angled ∆ABC,

    Using pythagoras theorem,
    AC² = AB² + BC²
    ⇒ 5² = (–3)² + BC²
    16 = BC²
    ⇒ BC = 4
    We know that,
    sin2A = 2sinA × cosA
    ⇒ sin2x = 2 × sinx× cosx
    = 2 ×
    - 4
    ×
    - 3
    55

    =
    24
    25

    ∵ Here, sinq is –ve


  1. What is the value of tan 330° ?









  1. View Hint View Answer Discuss in Forum

    tan 330° = tan(360° – 30°)
    = –tan 30°
    ∵ tan(360° - θ) - tanθ

    =
    - 1
    2

    Correct Option: D

    tan 330° = tan(360° – 30°)
    = –tan 30°
    ∵ tan(360° - θ) - tanθ

    =
    - 1
    2



  1. The degree measure of
    will be
    12










  1. View Hint View Answer Discuss in Forum

    We know that,

    1R =
    180°
    =
    R =
    180°
    ×
    ° = 75°
    π12π12

    Correct Option: B

    We know that,

    1R =
    180°
    =
    R =
    180°
    ×
    ° = 75°
    π12π12


  1. If sin (2a + 45°) = cos (30° – a), where 0° < a < 90°, then the value of a is :









  1. View Hint View Answer Discuss in Forum

    sin (2a + 45°) = cos (30° – a)
    ⇒ sin (2a + 45°) = sin {90° – (30° – a) }
    ⇒ sin (2a + 45°) = sin (60° + a)
    [∵ sin (90° – θ) = cosθ]
    ⇒ 2a + 45° = 60° + a
    ⇒ 2a – a = 60° - 45°
    ⇒ a = 15°

    Correct Option: B

    sin (2a + 45°) = cos (30° – a)
    ⇒ sin (2a + 45°) = sin {90° – (30° – a) }
    ⇒ sin (2a + 45°) = sin (60° + a)
    [∵ sin (90° – θ) = cosθ]
    ⇒ 2a + 45° = 60° + a
    ⇒ 2a – a = 60° - 45°
    ⇒ a = 15°



  1. The least value of tan²x + cot²x is:









  1. View Hint View Answer Discuss in Forum

    The minimum value of a tan²x + b cot²x = 2√ab
    ∴ The minimum value of tan²x + cot²x = 2

    Correct Option: B

    The minimum value of a tan²x + b cot²x = 2√ab
    ∴ The minimum value of tan²x + cot²x = 2