Trigonometry


  1. The value of (cos 53° – sin 37°) is









  1. View Hint View Answer Discuss in Forum

    cos53° – sin37°
    = cos (90° – 37°) – sin37°
    = sin37° – sin37° = 0

    Correct Option: A

    cos53° – sin37°
    = cos (90° – 37°) – sin37°
    = sin37° – sin37° = 0


  1. If cosecθ + sinθ = 5/2, then the value of (cosecθ – sinθ) is :









  1. View Hint View Answer Discuss in Forum

    cosecθ + sinθ =
    5
    2

    1
    + sinθ =
    5
    2sinθ

    1 + sinθ
    =
    5
    2sinθ

    ⇒ 2 sin²θ + 2 = 5sinθ
    ⇒ 2 sin2θ – 5 sinθ + 2 = 0
    ⇒ 2 sin2θ – 4 sinθ – sinθ + 2 = 0
    ⇒ 2 sinθ (sinθ – 2) – 1 (sinθ – 2) = 0
    ⇒ (2 sinθ – 1) (sinθ – 2) = 0
    ⇒ 2 sinθ – 1 = 0
    ⇒ 2 sinθ = 1
    ⇒ sinθ =
    1
    because sinθ ≠ 2
    2

    ⇒ cosecθ = 2
    ∴ cosecθ – sinθ = 2 –
    1
    =
    3
    22

    Correct Option: B

    cosecθ + sinθ =
    5
    2

    1
    + sinθ =
    5
    2sinθ

    1 + sinθ
    =
    5
    2sinθ

    ⇒ 2 sin²θ + 2 = 5sinθ
    ⇒ 2 sin2θ – 5 sinθ + 2 = 0
    ⇒ 2 sin2θ – 4 sinθ – sinθ + 2 = 0
    ⇒ 2 sinθ (sinθ – 2) – 1 (sinθ – 2) = 0
    ⇒ (2 sinθ – 1) (sinθ – 2) = 0
    ⇒ 2 sinθ – 1 = 0
    ⇒ 2 sinθ = 1
    ⇒ sinθ =
    1
    because sinθ ≠ 2
    2

    ⇒ cosecθ = 2
    ∴ cosecθ – sinθ = 2 –
    1
    =
    3
    22



  1. The value of
    2tan 53°
    -
    cot 80°
    is :
    cot37 °tan 10 °









  1. View Hint View Answer Discuss in Forum

    2tan 53°
    -
    cot 80°
    cot 37°tan 10°

    =
    2tan (90° - 37°)
    -
    cot (90° - 10°)
    cot 37°tan 10°

    =
    2cot 37°
    -
    tan 10°
    cot 37°tan 10°

    = 2 – 1 = 1

    Correct Option: C

    2tan 53°
    -
    cot 80°
    cot 37°tan 10°

    =
    2tan (90° - 37°)
    -
    cot (90° - 10°)
    cot 37°tan 10°

    =
    2cot 37°
    -
    tan 10°
    cot 37°tan 10°

    = 2 – 1 = 1


  1. The value of cot 10°. cot 20°. cot 60°. cot 70°. cot 80° is :









  1. View Hint View Answer Discuss in Forum

    Expression = cot10°.cot20°.cot60°.cot70°.cot80° = (cot10°.cot80°) (cot20°. cot70°).cot60°

    = {cot10°.cot (90°–10°)} {cot20°.cot(90° – 20°)}.
    1
    = (cot10°.tan10°)(cot20°.tan20°).
    1
    33

    = 1.1
    1
    =
    1
    33

    [∵ cot (90° – θ) = tanθ; tanθ.cotθ = 1]

    Correct Option: D

    Expression = cot10°.cot20°.cot60°.cot70°.cot80° = (cot10°.cot80°) (cot20°. cot70°).cot60°

    = {cot10°.cot (90°–10°)} {cot20°.cot(90° – 20°)}.
    1
    = (cot10°.tan10°)(cot20°.tan20°).
    1
    33

    = 1.1
    1
    =
    1
    33

    [∵ cot (90° – θ) = tanθ; tanθ.cotθ = 1]



  1. If 7sin²θ + 3cos²θ = 4, and 0° < θ < 90°, then the value of tanθ is :









  1. View Hint View Answer Discuss in Forum

    7 sin²θ + 3 cos²θ = 4
    On dividing by cos²θ,

    7 sin²θ
    +
    3 cos²θ
    =
    4
    cos²θcos²θcos²θ

    ⇒ 7tan²θ + 3 = 4 sec²θ = 4 (1 + tan²θ)
    ⇒ 7tan²θ + 3 = 4 + 4 tan2θ
    ⇒ 7tan²θ – 4 tan2θ = 4 – 3
    ⇒ 3tan²θ = 1
    ⇒ tan²θ =
    1
    3

    ⇒ tan²θ =
    1
    3

    Correct Option: B

    7 sin²θ + 3 cos²θ = 4
    On dividing by cos²θ,

    7 sin²θ
    +
    3 cos²θ
    =
    4
    cos²θcos²θcos²θ

    ⇒ 7tan²θ + 3 = 4 sec²θ = 4 (1 + tan²θ)
    ⇒ 7tan²θ + 3 = 4 + 4 tan2θ
    ⇒ 7tan²θ – 4 tan2θ = 4 – 3
    ⇒ 3tan²θ = 1
    ⇒ tan²θ =
    1
    3

    ⇒ tan²θ =
    1
    3