Trigonometry


  1. What is the value of A ? A -
    cos θ
    +
    sin(-θ)
    -
    tan(90° + θ)
    ?
    sin(90° + θ)sin(180° + θ)cot θ










  1. View Hint View Answer Discuss in Forum

    cos θ
    +
    sin(-θ)
    -
    tan(90° + θ)
    sin(90° + θ)sin(180° + θ)cot θ

    =
    cos θ
    +
    - sinθ
    +
    cotθ
    cosθ - sinθcot θ

    = 1 + 1 + 1 = 3

    Correct Option: C

    cos θ
    +
    sin(-θ)
    -
    tan(90° + θ)
    sin(90° + θ)sin(180° + θ)cot θ

    =
    cos θ
    +
    - sinθ
    +
    cotθ
    cosθ - sinθcot θ

    = 1 + 1 + 1 = 3


  1. What is the value of tan
    π
    + x?
    4










  1. View Hint View Answer Discuss in Forum

    tan=tan
    π
    + tan x
    π
    + x4
    41 - tan
    π
    tan x
    4

    ∵ tan(A + b)
    tanA + tanB
    1 - tanA tanB

    =
    1 + tanx
    1 - tanx

    Correct Option: B

    tan=tan
    π
    + tan x
    π
    + x4
    41 - tan
    π
    tan x
    4

    ∵ tan(A + b)
    tanA + tanB
    1 - tanA tanB

    =
    1 + tanx
    1 - tanx



  1. If cosC – cosD = y, then the value of y is









  1. View Hint View Answer Discuss in Forum

    Here,
    cosC – cosD = y
    ⇒ y = cosC – cosD
    ⇒ y = –2sin

    C + D
    .sin
    C - D
    22

    [∵ It is the basic formula of cosC – cosD]

    Correct Option: C

    Here,
    cosC – cosD = y
    ⇒ y = cosC – cosD
    ⇒ y = –2sin

    C + D
    .sin
    C - D
    22

    [∵ It is the basic formula of cosC – cosD]


  1. If sinx = 1/3 , then the value of sin3x will be









  1. View Hint View Answer Discuss in Forum

    Here,

    sinx =
    1
    3

    We know that, sin3x = 3sinx – 4sin³x
    On putting the value of sinx, we get
    sin 3x = 3
    1
    - 4
    1
    ³
    33

    = 1 –
    4
    27

    =
    27 - 4
    27

    sin3x =
    23
    27

    Correct Option: D

    Here,

    sinx =
    1
    3

    We know that, sin3x = 3sinx – 4sin³x
    On putting the value of sinx, we get
    sin 3x = 3
    1
    - 4
    1
    ³
    33

    = 1 –
    4
    27

    =
    27 - 4
    27

    sin3x =
    23
    27



  1. If sinx × cosy + cosx × siny = 1, then the value of x + y will be









  1. View Hint View Answer Discuss in Forum

    Here,
    sinx × cosy + cosx × siny = 1
    → sin(x + y) = 1
    [∵ sin (A + B) = sinA cosB + cosA sinB]

    ⇒ sin(x + y) = sin
    π
    2

    ⇒ x + y =
    π
    2

    Correct Option: A

    Here,
    sinx × cosy + cosx × siny = 1
    → sin(x + y) = 1
    [∵ sin (A + B) = sinA cosB + cosA sinB]

    ⇒ sin(x + y) = sin
    π
    2

    ⇒ x + y =
    π
    2