Trigonometry
-
What is the value of A ? A - cos θ + sin(-θ) - tan(90° + θ) ? sin(90° + θ) sin(180° + θ) cot θ
-
View Hint View Answer Discuss in Forum
cos θ + sin(-θ) - tan(90° + θ) sin(90° + θ) sin(180° + θ) cot θ = cos θ + - sinθ + cotθ cosθ - sinθ cot θ
= 1 + 1 + 1 = 3Correct Option: C
cos θ + sin(-θ) - tan(90° + θ) sin(90° + θ) sin(180° + θ) cot θ = cos θ + - sinθ + cotθ cosθ - sinθ cot θ
= 1 + 1 + 1 = 3
-
What is the value of tan π + x ? 4
-
View Hint View Answer Discuss in Forum
tan = tan π + tan x π + x 4 4 1 - tan π tan x 4 ∵ tan(A + b) tanA + tanB 1 - tanA tanB = 1 + tanx 1 - tanx Correct Option: B
tan = tan π + tan x π + x 4 4 1 - tan π tan x 4 ∵ tan(A + b) tanA + tanB 1 - tanA tanB = 1 + tanx 1 - tanx
- If cosC – cosD = y, then the value of y is
-
View Hint View Answer Discuss in Forum
Here,
cosC – cosD = y
⇒ y = cosC – cosD
⇒ y = –2sinC + D .sin C - D 2 2
[∵ It is the basic formula of cosC – cosD]Correct Option: C
Here,
cosC – cosD = y
⇒ y = cosC – cosD
⇒ y = –2sinC + D .sin C - D 2 2
[∵ It is the basic formula of cosC – cosD]
- If sinx = 1/3 , then the value of sin3x will be
-
View Hint View Answer Discuss in Forum
Here,
sinx = 1 3
We know that, sin3x = 3sinx – 4sin³x
On putting the value of sinx, we getsin 3x = 3 1 - 4 1 ³ 3 3 = 1 – 4 27 = 27 - 4 27 sin3x = 23 27 Correct Option: D
Here,
sinx = 1 3
We know that, sin3x = 3sinx – 4sin³x
On putting the value of sinx, we getsin 3x = 3 1 - 4 1 ³ 3 3 = 1 – 4 27 = 27 - 4 27 sin3x = 23 27
- If sinx × cosy + cosx × siny = 1, then the value of x + y will be
-
View Hint View Answer Discuss in Forum
Here,
sinx × cosy + cosx × siny = 1
→ sin(x + y) = 1
[∵ sin (A + B) = sinA cosB + cosA sinB]⇒ sin(x + y) = sin π 2 ⇒ x + y = π 2 Correct Option: A
Here,
sinx × cosy + cosx × siny = 1
→ sin(x + y) = 1
[∵ sin (A + B) = sinA cosB + cosA sinB]⇒ sin(x + y) = sin π 2 ⇒ x + y = π 2