Trigonometry


  1. If cos 21° = x/y , then (cosec 21° – cos 69°) is equal to









  1. View Hint View Answer Discuss in Forum

    cos 21° = x/y
    ∴ cos 69° = cos (90° – 21°)
    = sin 21°

    = √1 - cos² 21° = √1 -
    =
    y² - x²
    y

    ∴ cosec 21° =
    y
    y² - x²

    ∴ cosec 21° – cos 69°
    =
    y
    =
    y² - x²
    y² - x²y

    =
    y² - (y² - x²)
    =
    y√y² - x²y√y² - x²

    Correct Option: A

    cos 21° = x/y
    ∴ cos 69° = cos (90° – 21°)
    = sin 21°

    = √1 - cos² 21° = √1 -
    =
    y² - x²
    y

    ∴ cosec 21° =
    y
    y² - x²

    ∴ cosec 21° – cos 69°
    =
    y
    =
    y² - x²
    y² - x²y

    =
    y² - (y² - x²)
    =
    y√y² - x²y√y² - x²


  1. If α + β = 90° and α : β = 2 : 1, then the ratio of cosα to cosβ is :









  1. View Hint View Answer Discuss in Forum

    α : β = 2 : 1
    Sum of the terms of ratio
    = 2 + 1 = 3
    α + β = 90°

    ∴ α =
    2
    × 90° = 60°
    3

    β = 30°
    cosα
    =
    cos 60°
    =
    1/2
    cosβcos 60°3/2

    = 1 : √3

    Correct Option: A

    α : β = 2 : 1
    Sum of the terms of ratio
    = 2 + 1 = 3
    α + β = 90°

    ∴ α =
    2
    × 90° = 60°
    3

    β = 30°
    cosα
    =
    cos 60°
    =
    1/2
    cosβcos 60°3/2

    = 1 : √3



  1. If θ is positive acute angle and 7 cos²θ + 3 sin²θ = 4, then the value of θ is :









  1. View Hint View Answer Discuss in Forum

    7 cos²θ + 3 sin²θ = 4
    ⇒ 7 (1 – sin²θ) + 3 sin²θ = 4
    ⇒ 7 – 7 sin²θ + 3sin²θ = 4
    ⇒ 7 – 4 sin²θ = 4
    ⇒ 4 sin²θ = 7 – 4 = 3

    ⇒ sin²θ =
    3
    4

    ⇒ sinθ =
    3
    2

    ∵0 < q < 90°
    ⇒ θ = 60°

    Correct Option: A

    7 cos²θ + 3 sin²θ = 4
    ⇒ 7 (1 – sin²θ) + 3 sin²θ = 4
    ⇒ 7 – 7 sin²θ + 3sin²θ = 4
    ⇒ 7 – 4 sin²θ = 4
    ⇒ 4 sin²θ = 7 – 4 = 3

    ⇒ sin²θ =
    3
    4

    ⇒ sinθ =
    3
    2

    ∵0 < q < 90°
    ⇒ θ = 60°


  1. If tanθ = 4/3, then the value of
    3sinθ + 2cosθ
    is :
    3sinθ - 2cosθ









  1. View Hint View Answer Discuss in Forum

    tanθ =
    4
    3

    Expression =
    3sinθ + 2cosθ
    3sinθ - 2cosθ

    On dividing numerator and denominator by cosθ,
    =  
    3sinθ
      +
    2cosθ
    cosθcos;θ
    3sinθ
    -
    2cosθ
    cosθcosθ

    =
    3tanθ + 2
    3tanθ - 2

    =  3 ×
    4
    + 2
    3
    3 ×
    4
    - 2
    3

    =
    4 + 2
    =
    6
    4 - 22

    Correct Option: C

    tanθ =
    4
    3

    Expression =
    3sinθ + 2cosθ
    3sinθ - 2cosθ

    On dividing numerator and denominator by cosθ,
    =  
    3sinθ
      +
    2cosθ
    cosθcos;θ
    3sinθ
    -
    2cosθ
    cosθcosθ

    =
    3tanθ + 2
    3tanθ - 2

    =  3 ×
    4
    + 2
    3
    3 ×
    4
    - 2
    3

    =
    4 + 2
    =
    6
    4 - 22



  1. If sec (4x – 50°) = cosec (50° – x), then the value of x is









  1. View Hint View Answer Discuss in Forum

    sec (4x – 50°) = sec (50° – x)
    ⇒ sec (4x – 50°) = sec (90° – (50° – x)) = sec (40° + x)
    ⇒ 4x – 50° = 40° + x
    ⇒ 4x – x = 50° + 40°
    ⇒ 3x = 90°

    ⇒ x =
    90°
    = 30°
    3

    Correct Option: C

    sec (4x – 50°) = sec (50° – x)
    ⇒ sec (4x – 50°) = sec (90° – (50° – x)) = sec (40° + x)
    ⇒ 4x – 50° = 40° + x
    ⇒ 4x – x = 50° + 40°
    ⇒ 3x = 90°

    ⇒ x =
    90°
    = 30°
    3