Trigonometry


  1. What is the value of cos 105°?









  1. View Hint View Answer Discuss in Forum

    cos 105° = cos(60° + 45°)
    = cos 60° × cos 45° – sin 60° × sin 45°
    [∵ cos (A + B) = cosA cosB – sinA sinB]

    =
    1
    .
    1
    -
    3
    .
    1
    =
    1 - √3
    22222√2

    Correct Option: A

    cos 105° = cos(60° + 45°)
    = cos 60° × cos 45° – sin 60° × sin 45°
    [∵ cos (A + B) = cosA cosB – sinA sinB]

    =
    1
    .
    1
    -
    3
    .
    1
    =
    1 - √3
    22222√2


  1. The radian measure of 120° will be









  1. View Hint View Answer Discuss in Forum

    We know that,

    1° =
    π
    R
    180

    ⇒ 120° =
    π
    × 120R =
    R
    1803

    Correct Option: D

    We know that,

    1° =
    π
    R
    180

    ⇒ 120° =
    π
    × 120R =
    R
    1803



  1. If cosA + cos²A = 1, then the value of (sin²A + sin4A) is :









  1. View Hint View Answer Discuss in Forum

    cosA + cos²A = 1
    ⇒ cosA = 1 – cos²A = sin²A
    ∴ sin²A + sin4A
    = sin²A + (sin²A)²
    = sin²A + cos²A = 1

    Correct Option: D

    cosA + cos²A = 1
    ⇒ cosA = 1 – cos²A = sin²A
    ∴ sin²A + sin4A
    = sin²A + (sin²A)²
    = sin²A + cos²A = 1


  1. If sinq+ cosecθ = 2, then the value of (sin-7θ + cosec7θ) is









  1. View Hint View Answer Discuss in Forum

    sinθ + cosecθ = 2
    ⇒ sinθ + 1/sinθ = 2
    ⇒ sin2θ + 1 = 2sinθ
    ⇒ sin²θ – 2sinθ + 1 = 0
    ⇒ (sinθ – 1)² = 0
    ⇒ sinθ – 1 = 0
    ⇒ sinθ = 1
    ∴ cosecθ = 1
    ∴ sin-7θ + cosec7θ
    = (1)-7 + (1)7 = 2

    Correct Option: C

    sinθ + cosecθ = 2
    ⇒ sinθ + 1/sinθ = 2
    ⇒ sin2θ + 1 = 2sinθ
    ⇒ sin²θ – 2sinθ + 1 = 0
    ⇒ (sinθ – 1)² = 0
    ⇒ sinθ – 1 = 0
    ⇒ sinθ = 1
    ∴ cosecθ = 1
    ∴ sin-7θ + cosec7θ
    = (1)-7 + (1)7 = 2



  1. If 2y cosq = x sinθ and 2x secθ – y cosecθ = 3 then what is the value of (x² + 4y²) ?









  1. View Hint View Answer Discuss in Forum

    2y cosθ = x sinθ

    ⇒ x =
    2y cosθ
    .....(i)
    sinθ

    ∴ 2x secθ – y cosecθ = 3
    2 × 2 × ycosθ.secθ
    - ycosecθ = 3
    sinθ

    ⇒ 4y cosecθ – y cosecθ = 3
    ⇒ 3y cosecθ = 3
    ⇒ y =
    1
    = sinθ
    cosecθ

    From equation (i),
    x =
    2 × sinθ.cosθ
    = 2cosθ
    sinθ

    &therae4; x² + 4y² = (2cosθ)² + 4 sin²θ
    = 4 (cos²θ + sin²θ) = 4

    Correct Option: A

    2y cosθ = x sinθ

    ⇒ x =
    2y cosθ
    .....(i)
    sinθ

    ∴ 2x secθ – y cosecθ = 3
    2 × 2 × ycosθ.secθ
    - ycosecθ = 3
    sinθ

    ⇒ 4y cosecθ – y cosecθ = 3
    ⇒ 3y cosecθ = 3
    ⇒ y =
    1
    = sinθ
    cosecθ

    From equation (i),
    x =
    2 × sinθ.cosθ
    = 2cosθ
    sinθ

    &therae4; x² + 4y² = (2cosθ)² + 4 sin²θ
    = 4 (cos²θ + sin²θ) = 4