Trigonometry


  1. Which of the folliwing is correct ?









  1. View Hint View Answer Discuss in Forum

    We know that,

    1R =
    180°
    π

    1R = 57.29°
    As we know that the value of sinq increases as &thetea; increases.
    ⇒ sin 1° < sin 57.29°
    sin 1° < sin
    180
    °
    π

    ⇒ sin 1° < sin 1

    Correct Option: B

    We know that,

    1R =
    180°
    π

    1R = 57.29°
    As we know that the value of sinq increases as &thetea; increases.
    ⇒ sin 1° < sin 57.29°
    sin 1° < sin
    180
    °
    π

    ⇒ sin 1° < sin 1


  1. If tanα =
    m
    , tanβ =
    1
    then α + β equal to
    m + n2m + n










  1. View Hint View Answer Discuss in Forum

    We know that,

    tan(α + β) =
    tanα + tanβ
    1 - tanα . tanβ

    ⇒ tan(α + β)
    =
    m
    +
    1
    m + 12m + 1
    1 -
    m
    1
    (m + 1)(2m + 1)

    ∵ tan α =
    m
    m + 1

    ∵ tan β =
    m
    2m + 1

    =
    2m² + m + m + 1
    (m + 1)(2m + 1)
    2m² + 3m + 1 - m
    (m + 1)(2m + 1)

    =
    2m² + 2m + 1
    = 1
    2m² + 2m + 1

    ⇒ tan(α + β) = 1
    tan(α + β) = tan
    π
    4

    ∴ α + β =
    π
    4

    Correct Option: D

    We know that,

    tan(α + β) =
    tanα + tanβ
    1 - tanα . tanβ

    ⇒ tan(α + β)
    =
    m
    +
    1
    m + 12m + 1
    1 -
    m
    1
    (m + 1)(2m + 1)

    ∵ tan α =
    m
    m + 1

    ∵ tan β =
    m
    2m + 1

    =
    2m² + m + m + 1
    (m + 1)(2m + 1)
    2m² + 3m + 1 - m
    (m + 1)(2m + 1)

    =
    2m² + 2m + 1
    = 1
    2m² + 2m + 1

    ⇒ tan(α + β) = 1
    tan(α + β) = tan
    π
    4

    ∴ α + β =
    π
    4



  1. If α + β =
    π
    , then the value of (1 + tanα)(1 + tanβ) is
    4










  1. View Hint View Answer Discuss in Forum

    Here, α + β =
    π
    4

    (1 + tanα)(1 + tanβ)
    = 1 + tanβ + tanα + tanα tanβ
    = 1 + tanα + tanβ + tanα tanβ
    Also, we know that,
    tan (α + β) =
    tanα + tanβ
    1 - tanαtanβ

    tan
    π
    =
    tanα + tanβ
    41 - tanαtanβ

    ⇒ 1 - tanαtanβ = tanα + tanβ
    ⇒ (1 + tanα)(1 + tanβ)
    = 1 + 1 – tanα tanβ + tanα tanβ = 2

    Correct Option: B

    Here, α + β =
    π
    4

    (1 + tanα)(1 + tanβ)
    = 1 + tanβ + tanα + tanα tanβ
    = 1 + tanα + tanβ + tanα tanβ
    Also, we know that,
    tan (α + β) =
    tanα + tanβ
    1 - tanαtanβ

    tan
    π
    =
    tanα + tanβ
    41 - tanαtanβ

    ⇒ 1 - tanαtanβ = tanα + tanβ
    ⇒ (1 + tanα)(1 + tanβ)
    = 1 + 1 – tanα tanβ + tanα tanβ = 2


  1. If tan A =
    1 - cos B
    , then tan 2A is equal to
    sin B










  1. View Hint View Answer Discuss in Forum

    Here, tanA =
    1 - cosB
    sinB

    We know that,
    tan2A =
    2tanA
    1 - tan²A

    tan2A = 2
    1 - cosB
    sinB
    1 -
    1 - cosB
    ²
    sinB

    tan2A =
    2(1 - cosB)
    sinB
    sin²B - (1 - cosB)²
    sin²B

    =
    2(1 - cosB)sinB
    [∵ sin²θ = 1 - cos²θ]
    1 - cos²B - (1 - cosB)²

    =
    2(1 - cosB)sinB
    (1 - cosB)[1 + cosB - 1 + cosB]

    =
    2sinB
    2cosB

    = tan B.

    Correct Option: B

    Here, tanA =
    1 - cosB
    sinB

    We know that,
    tan2A =
    2tanA
    1 - tan²A

    tan2A = 2
    1 - cosB
    sinB
    1 -
    1 - cosB
    ²
    sinB

    tan2A =
    2(1 - cosB)
    sinB
    sin²B - (1 - cosB)²
    sin²B

    =
    2(1 - cosB)sinB
    [∵ sin²θ = 1 - cos²θ]
    1 - cos²B - (1 - cosB)²

    =
    2(1 - cosB)sinB
    (1 - cosB)[1 + cosB - 1 + cosB]

    =
    2sinB
    2cosB

    = tan B.



  1. The value of sin (45° + θ) – cos(45° – θ) is









  1. View Hint View Answer Discuss in Forum

    sin (45° + θ) – cos (45° – θ)
    = sin 45° cosθ + cos 45° sinθ – (cos 45° cosθ + sin 45° sinθ)
    ∵ sin (A + B) = sinA cosB + cosA sinB
    cos(A – B) = cosA cosB + sinA sinB

    =
    cosθ
    +
    sinθ
    -
    cosθ
    -
    sinθ
    = 0
    2222

    Correct Option: D

    sin (45° + θ) – cos (45° – θ)
    = sin 45° cosθ + cos 45° sinθ – (cos 45° cosθ + sin 45° sinθ)
    ∵ sin (A + B) = sinA cosB + cosA sinB
    cos(A – B) = cosA cosB + sinA sinB

    =
    cosθ
    +
    sinθ
    -
    cosθ
    -
    sinθ
    = 0
    2222