Trigonometry
-
The value of 2cos π cos 9π + cos 3π + cos 5π is 13 13 13 13
-
View Hint View Answer Discuss in Forum
2cos π cos 9π + cos 3π + cos 5π 13 13 13 13 = cos 
π + 9π 
+ cos 
π - 9π 
+ cos 3π + cos 5π 13 13 13 13 13 13
∵ 2 cosA cosB = cos (A + B) + cos (A – B)= cos 10π + cos 
- 8π 
+ cos 3π + cos 5π 13 13 13 13 = cos 10π + cos 8π + cos 3π + cos 5π 13 13 13 13
∵ cos(-θ) = cosθ= cos 
π - 3π 
+ cos 
π - 5π 
+ cos 3π + cos 5π 13 13 13 13 = - cos 3π - cos 5π + cos 3π + cos 5π 13 13 13 13
= 0Correct Option: B
2cos π cos 9π + cos 3π + cos 5π 13 13 13 13 = cos 
π + 9π 
+ cos 
π - 9π 
+ cos 3π + cos 5π 13 13 13 13 13 13
∵ 2 cosA cosB = cos (A + B) + cos (A – B)= cos 10π + cos 
- 8π 
+ cos 3π + cos 5π 13 13 13 13 = cos 10π + cos 8π + cos 3π + cos 5π 13 13 13 13
∵ cos(-θ) = cosθ= cos 
π - 3π 
+ cos 
π - 5π 
+ cos 3π + cos 5π 13 13 13 13 = - cos 3π - cos 5π + cos 3π + cos 5π 13 13 13 13
= 0
- If sinθ + cosθ = 1, then the value of sin2θ is equal to
-
View Hint View Answer Discuss in Forum
Here,
sinθ + cosθ = 1
Squaring on both sides, we get
(sinθ + cosθ)² = 1
sin²θ + cos²θ + 2sinθ × cosθ = 1
1 + 2sinθ cosθ = 1
2sinθ× cosθ = 0
And we know that,
sin2θ = 2sinθ cosθ
⇒ sin2θ = 0Correct Option: C
Here,
sinθ + cosθ = 1
Squaring on both sides, we get
(sinθ + cosθ)² = 1
sin²θ + cos²θ + 2sinθ × cosθ = 1
1 + 2sinθ cosθ = 1
2sinθ× cosθ = 0
And we know that,
sin2θ = 2sinθ cosθ
⇒ sin2θ = 0
-
The value of cos 
π - θ 
cos 
π - ∅ 
-sin 
π - θ 
sin 
π - ∅ 
will be 4 4 4 4
-
View Hint View Answer Discuss in Forum
Here,
cos 
π - θ 
cos 
π - ∅ 
4 4 - sin 
π - θ 
sin 
π - ∅ 
= ? 4 4
Letπ - θ = A 4 π - ∅ = B 4 ⇒ cos 
π - θ 
cos 
π - ∅ 
4 4 - sin 
π - θ 
sin 
π - ∅ 
= ? 4 4 = cos 
π - θ + π - ∅ 
4 4 = cos 
π - θ - ∅ 
2 = cos 
π - (θ + ∅) 
2
= sin (θ + ∅)∵ cos 
π - θ 
= sinθ 2 Correct Option: B
Here,
cos 
π - θ 
cos 
π - ∅ 
4 4 - sin 
π - θ 
sin 
π - ∅ 
= ? 4 4
Letπ - θ = A 4 π - ∅ = B 4 ⇒ cos 
π - θ 
cos 
π - ∅ 
4 4 - sin 
π - θ 
sin 
π - ∅ 
= ? 4 4 = cos 
π - θ + π - ∅ 
4 4 = cos 
π - θ - ∅ 
2 = cos 
π - (θ + ∅) 
2
= sin (θ + ∅)∵ cos 
π - θ 
= sinθ 2
-
If tan θ = x − y , the value of sinθ is equal to [If 0° ≤ θ ≤ 90°] x + y
-
View Hint View Answer Discuss in Forum
Here,
tan θ = x - y x + y
Consider ∆ABC,
Using pythagoras theorem, we get
AC² = AB² + BC²
⇒ AC² = (x + y)² + (x – y)²
= x² + y² + 2xy + x² + y² – 2xy
AC² = 2 (x² + y²)
AC = √2(x² + y²)
As θ lies in first quadrant,
∵ sinq will be +vesinθ = BC AC sinθ = x - y √2(x² + y²) Correct Option: A
Here,
tan θ = x - y x + y
Consider ∆ABC,
Using pythagoras theorem, we get
AC² = AB² + BC²
⇒ AC² = (x + y)² + (x – y)²
= x² + y² + 2xy + x² + y² – 2xy
AC² = 2 (x² + y²)
AC = √2(x² + y²)
As θ lies in first quadrant,
∵ sinq will be +vesinθ = BC AC sinθ = x - y √2(x² + y²)
- If sinC + sinD = x, then the value of x is
-
View Hint View Answer Discuss in Forum
Here, sinC + sinD = x
⇒ x = sinC + sinD⇒ x = 2.sin 
C + D 
.cos 
C - D 
2 2
[∵ it is the basic formula of sinC + sinD]Correct Option: D
Here, sinC + sinD = x
⇒ x = sinC + sinD⇒ x = 2.sin 
C + D 
.cos 
C - D 
2 2
[∵ it is the basic formula of sinC + sinD]