Home » Aptitude » Trigonometry » Question
  1. If tan θ =
    x − y
    , the value of sinθ is equal to [If 0° ≤ θ ≤ 90°]
    x + y

    1. x − y
      2(x2 + y2)
    2. x + y
      2(x2 + y2)
    3. x + y
      2(x2 − y2)
    4. x − y
      2(x2 − y2)
Correct Option: A

Here,

tan θ =
x - y
x + y

Consider ∆ABC,

Using pythagoras theorem, we get
AC² = AB² + BC²
⇒ AC² = (x + y)² + (x – y)²
= x² + y² + 2xy + x² + y² – 2xy
AC² = 2 (x² + y²)
AC = √2(x² + y²)
As θ lies in first quadrant,
∵ sinq will be +ve
sinθ =
BC
AC

sinθ =
x - y
2(x² + y²)



Your comments will be displayed only after manual approval.