Home » Aptitude » Trigonometry » Question
  1. If tanα =
    m
    , tanβ =
    1
    then α + β equal to
    m + n2m + n

    1. π/2
    2. π/6
    3. π/3
    4. π/4
Correct Option: D

We know that,

tan(α + β) =
tanα + tanβ
1 - tanα . tanβ

⇒ tan(α + β)
=
m
+
1
m + 12m + 1
1 -
m
1
(m + 1)(2m + 1)

∵ tan α =
m
m + 1

∵ tan β =
m
2m + 1

=
2m² + m + m + 1
(m + 1)(2m + 1)
2m² + 3m + 1 - m
(m + 1)(2m + 1)

=
2m² + 2m + 1
= 1
2m² + 2m + 1

⇒ tan(α + β) = 1
tan(α + β) = tan
π
4

∴ α + β =
π
4



Your comments will be displayed only after manual approval.