-
If tanα = m , tanβ = 1 then α + β equal to m + n 2m + n
-
- π/2
- π/6
- π/3
- π/4
- π/2
Correct Option: D
We know that,
tan(α + β) = | ||
1 - tanα . tanβ |
⇒ tan(α + β)
= | + | ||
m + 1 | 2m + 1 | ||
1 - | |||
(m + 1) | (2m + 1) |
∵ tan α = | ||
m + 1 |
∵ tan β = | ||
2m + 1 |
= | |||||
(m + 1)(2m + 1) | |||||
(m + 1)(2m + 1) |
= | = 1 | |
2m² + 2m + 1 |
⇒ tan(α + β) = 1
tan(α + β) = tan | ||
4 |
∴ α + β = | ||
4 |