Sequences and Series


  1. The sum of 10 terms of the arithmetic series is 390. If the third term of the series is 19, find the first term









  1. View Hint View Answer Discuss in Forum

    Here , S10 = 390 and first term ( a ) = ?
    Let the first term of A.P. be ‘a’ and the common difference be ‘d’.

    ∴ Sn =
    n
    [2a + (n - 1)d]
    2

    ⇒ 390 =
    10
    [2a + (10 - 1)d]
    2

    ⇒ 390 = 5 (2a + 9d)
    ⇒ 2a + 9d =
    390
    = 78 .....(i)
    5

    Again, third term = 19
    [ ∴ Tn = a + (n – 1)d]
    ⇒ a + 2d = 19 .... (ii)
    By equation (i) – 2 × (ii),

    Correct Option: A

    Here , S10 = 390 and first term ( a ) = ?
    Let the first term of A.P. be ‘a’ and the common difference be ‘d’.

    ∴ Sn =
    n
    [2a + (n - 1)d]
    2

    ⇒ 390 =
    10
    [2a + (10 - 1)d]
    2

    ⇒ 390 = 5 (2a + 9d)
    ⇒ 2a + 9d =
    390
    = 78 .....(i)
    5

    Again, third term = 19
    [ ∴ Tn = a + (n – 1)d]
    ⇒ a + 2d = 19 .... (ii)
    By equation (i) – 2 × (ii),
    2a + 9d – 2a – 4d = 78 – 38
    ⇒ 5d = 40
    ⇒ d =
    40
    = 8
    5

    From equation (ii),
    a + 2 × 8 = 19
    ⇒ a = 19 – 16 = 3


  1. Given 2² + 4² + 6² + .......+ 40² = 11480, then the value of 1² + 2² + 3² + ......+20² is :









  1. View Hint View Answer Discuss in Forum

    Given in question , 2² + 4² + 6² + .... + 40² = 11480
    ⇒ ( 2 . 1 )² + ( 2 . 2 )² + ( 2 . 3 )² + .... + ( 2 . 20 )² = 11480
    ⇒ 1².2² + 2².2² + 3².2² + ...+ 20².2² = 11480
    ⇒ 2² (1² + 2² + 3² + .... + 20²) = 11480
    ⇒ 4 [ 1² + 2² + 3² + .... + 20² ] = 11480

    Correct Option: A

    Given in question , 2² + 4² + 6² + .... + 40² = 11480
    ⇒ ( 2 . 1 )² + ( 2 . 2 )² + ( 2 . 3 )² + .... + ( 2 . 20 )² = 11480
    ⇒ 1².2² + 2².2² + 3².2² + ...+ 20².2² = 11480
    ⇒ 2² (1² + 2² + 3² + .... + 20²) = 11480
    ⇒ 4 [ 1² + 2² + 3² + .... + 20² ] = 11480

    Required answer =
    11480
    = 2870
    4



  1. If 1² + 2² + 3² + ..... + p² =
    p(p + 1)(2p + 1)
    , then 1² + 3² + 5² + ..... + 17² is equal to :
    6










  1. View Hint View Answer Discuss in Forum

    As we know that ,

    1² + 2² + 3² + .... + p² =
    p(p + 1)(2p + 1)
    6

    ∴ 1² + 3² + 5² + .... + 17² = (1² + 2² + 3² + ... + 17²) – (2² + 4² + ...+ 16²)
    Required answer = (1² + 2² + 3² + ... + 17²) – 4 (1² + 2² + ... + 8²)
    Required answer =
    17(17 + 1)(34 + 1)
    -
    4 × 8(8 + 1)(16 + 1)
    66

    Correct Option: D

    As we know that ,

    1² + 2² + 3² + .... + p² =
    p(p + 1)(2p + 1)
    6

    ∴ 1² + 3² + 5² + .... + 17² = (1² + 2² + 3² + ... + 17²) – (2² + 4² + ...+ 16²)
    Required answer = (1² + 2² + 3² + ... + 17²) – 4 (1² + 2² + ... + 8²)
    Required answer =
    17(17 + 1)(34 + 1)
    -
    4 × 8(8 + 1)(16 + 1)
    66

    Required answer =
    17 × 18 × 35
    -
    4 × 8 × 9 × 17
    66

    Required answer = 1785 – 816 = 969


  1. If 7 times the seventh term of an Arithmetic Progression (AP) is equal to 11 times its eleventh term, then the 18th term of the AP will be









  1. View Hint View Answer Discuss in Forum

    We know that , nth term of an arithmetic progression = an = a + (n – 1) d
    Here , n = 7 and 11
    ∴ a7 = a + (7 – 1) d = a + 6d
    a11 = a + (11 – 1) d = a + 10d
    According to the question,
    7 a7 = 11 a11
    ⇒ 7 (a + 6d) = 11 (a + 10d)
    ⇒ 7a + 42d = 11a + 110 d
    ⇒ 11a – 7a = 42d – 110d

    Correct Option: B

    We know that , nth term of an arithmetic progression = an = a + (n – 1) d
    Here , n = 7 and 11
    ∴ a7 = a + (7 – 1) d = a + 6d
    a11 = a + (11 – 1) d = a + 10d
    According to the question,
    7 a7 = 11 a11
    ⇒ 7 (a + 6d) = 11 (a + 10d)
    ⇒ 7a + 42d = 11a + 110 d
    ⇒ 11a – 7a = 42d – 110d
    ⇒ 4a = – 68d
    ⇒ a = – 17d .... (i)
    ∴ a18 = a + (18 – 1)d = a + 17d = –17d + 17d = 0



  1. (45 + 46 + 47 + .... + 113 + 114 + 115) is equal to









  1. View Hint View Answer Discuss in Forum

    We can write , (45 + 46 + 47 + ....... + 114 + 115) = (1 + 2 + 3 +..... + 115) – (1 + 2 + 3 + .... + 44)

    ∵ 1 + 2 + 3 + ..... + n =
    n ( n + 1)
    2

    Required answer =
    115 × (115 + 1)
    -
    44 × (44 + 1)
    22

    Correct Option: C

    We can write , (45 + 46 + 47 + ....... + 114 + 115) = (1 + 2 + 3 +..... + 115) – (1 + 2 + 3 + .... + 44)

    ∵ 1 + 2 + 3 + ..... + n =
    n ( n + 1)
    2

    Required answer =
    115 × (115 + 1)
    -
    44 × (44 + 1)
    22

    Required answer =
    115 × 116
    -
    44 × 45
    22

    Required answer = 115 × 58 – 22 × 45
    Required answer = 6670 – 990 = 5680