Sequences and Series


  1. The sum (5³ + 6³ + .... 10³) is equal to :









  1. View Hint View Answer Discuss in Forum

    According to question ,
    Sum = 5³ + 6³ + .... 10³
    Sum = 125 + 216 + 343 + 512 + 729 + 1000 = 2925
    Second method to solve this question :
    Sn = (5³ + 6³ + ............ 10³)
    Sn = (1³ + 2³ + 3³ + 4³ + 5³ +... 10³) – (1³ + 2³ + 3³ + 4³)

    Sn =
    n(n + 1)
    ² - (1 + 8 + 27 + 64)
    2

    Correct Option: D

    According to question ,
    Sum = 5³ + 6³ + .... 10³
    Sum = 125 + 216 + 343 + 512 + 729 + 1000 = 2925
    Second method to solve this question :
    Sn = (5³ + 6³ + ............ 10³)
    Sn = (1³ + 2³ + 3³ + 4³ + 5³ +... 10³) – (1³ + 2³ + 3³ + 4³)

    Sn =
    n(n + 1)
    ² - (1 + 8 + 27 + 64)
    2

    Sn =
    10(10 + 1)
    ² - 100
    2

    Sn = (55)² – 100 = 3025 – 100 = 2925


  1. If 1³ + 2³ + 3³ + .... + 10³ = 3025, then find the value of 2³ + 4³ + 6³ + .... + 20³









  1. View Hint View Answer Discuss in Forum

    Given in question ,
    ∵ 1³ + 2³ + 3³ + .... + 10³ = 3025 .....( 1 )
    ∴ 2³ + 4³ + 6³ + .... + 20³ = (2 × 1)³ + (2 × 2)³ + (2 × 3)³ + ..... + (2 × 10)³
    Required answer = 8 × 1³ + 8 × 2³ + 8 × 3³ .... + 8 × 10³

    Correct Option: D

    Given in question ,
    ∵ 1³ + 2³ + 3³ + .... + 10³ = 3025 .....( 1 )
    ∴ 2³ + 4³ + 6³ + .... + 20³ = (2 × 1)³ + (2 × 2)³ + (2 × 3)³ + ..... + (2 × 10)³
    Required answer = 8 × 1³ + 8 × 2³ + 8 × 3³ .... + 8 × 10³
    Required answer = 8 × [1³ + 2³ + 3³ + 4³ + ... + 10³]
    Required answer = 8 × 3025 = 24200 { ∴
    From ( 1 ) }



  1. If 1³ +2³ +3³ +4³ +5³ + 6³ = 441 then find the value of 2³ + 4³ + 6³ + 8³ + 10³ + 12³









  1. View Hint View Answer Discuss in Forum

    Given Here , 1³ + 2³ + 3³ + 4³ + 5³ + 6³ = 441 .....( 1 )
    Now , 2³ + 4³ + 6³ + 8³ + 10³ + 12³
    Required answer = 8 (1³ + 2³ + 3³ + 4³ + 5³ + 6³)

    Correct Option: D

    Given Here , 1³ + 2³ + 3³ + 4³ + 5³ + 6³ = 441 .....( 1 )
    Now , 2³ + 4³ + 6³ + 8³ + 10³ + 12³
    Required answer = 8 (1³ + 2³ + 3³ + 4³ + 5³ + 6³)
    Required answer = 8 × 441 = 3528 { Using ( 1 ) }


  1. If 1² + 2² + 3² ...... + x² = =
    x(x + 1) (2x + 1)
    then 1² + 3² + 5² + ..... 19² is equal to
    2










  1. View Hint View Answer Discuss in Forum

    From the question ,

    1² + 2² + 3² + ..... + n² =
    n(n + 1)(2n + 1)
    6

    ∴ 1² + 3² + 5² + ..... + 19² = (1² + 2² + 3² + ..... + 20²) – (2² + 4² + ..... + 20²)
    ∴ 1² + 3² + 5² + ..... + 19² =
    20(20 + 1)(40 + 1)
    – 2² (1² + 2² + ..... + 10²)
    6

    Correct Option: A

    From the question ,

    1² + 2² + 3² + ..... + n² =
    n(n + 1)(2n + 1)
    6

    ∴ 1² + 3² + 5² + ..... + 19² = (1² + 2² + 3² + ..... + 20²) – (2² + 4² + ..... + 20²)
    ∴ 1² + 3² + 5² + ..... + 19² =
    20(20 + 1)(40 + 1)
    – 2² (1² + 2² + ..... + 10²)
    6

    Required answer =
    20 × 21 × 41
    -
    4 × 10 (10 + 1)(20 + 1)
    66

    Required answer = 2870 – 1540 = 1330



  1. If 1³ + 2³ + .... + 9³ = 2025, then the value of (0.11)³ + (0.22)³ + .... + (0.99)³ is close to









  1. View Hint View Answer Discuss in Forum

    Given , 1³ + 2³ + ..... + 9³ = 2025 ....( 1 )

    Now, (0.11)³ + (0.22)³ + .... + (0.99)³ =
    11
    ³ +
    22
    ³ +........+
    99
    ³
    100100100

    Required answer =
    11
    ³ (1³ + 2³ +......+ 9³)
    100

    Correct Option: B

    Given , 1³ + 2³ + ..... + 9³ = 2025 ....( 1 )

    Now, (0.11)³ + (0.22)³ + .... + (0.99)³ =
    11
    ³ +
    22
    ³ +........+
    99
    ³
    100100100

    Required answer =
    11
    ³ (1³ + 2³ +......+ 9³)
    100

    Required answer =
    1331
    × 2025   { Using ( 1 ) }
    1000000

    Required answer =
    2695275
    = 2.695275 ≈ 2.695
    1000000