Ratio, Proportion
- A person distributes his pens among four friends A, B, C, D in the ratio
that the person should have?= 1 : 1 : 1 : 1 What is the minimum number of pens 3 4 5 6
-
View Hint View Answer Discuss in Forum
A : B : C
= 1 : 1 : 1 : 1 3 4 5 6 = 1 × 60 : 1 × 60 : 1 × 60 : 1 × 60 3 4 5 6
[LCM of 3, 4, 5 & 6 = 60]
= 20 : 15 : 12 : 10
∴ Minimum number of pens
= 20 + 15 + 12 + 10 = 57Correct Option: A
A : B : C
= 1 : 1 : 1 : 1 3 4 5 6 = 1 × 60 : 1 × 60 : 1 × 60 : 1 × 60 3 4 5 6
[LCM of 3, 4, 5 & 6 = 60]
= 20 : 15 : 12 : 10
∴ Minimum number of pens
= 20 + 15 + 12 + 10 = 57
- If x : y = 3 : 4 and y : z = 3 : 4,
then x + y + z is equal to 3z
-
View Hint View Answer Discuss in Forum
x : y = 3 : 4 = 9 : 12
y : z = 3 : 4 = 12 : 16
∴ x : y : z = 9 : 12 : 16∴ x + y + z = 9k + 12k + 16k 3z 3 × 16k = 37 48 Correct Option: D
x : y = 3 : 4 = 9 : 12
y : z = 3 : 4 = 12 : 16
∴ x : y : z = 9 : 12 : 16∴ x + y + z = 9k + 12k + 16k 3z 3 × 16k = 37 48
- If A : B = 1 : 2, B : C = 3 : 4
C : D = 6 : 9 and D : E = 12 : 16
then A : B : C : D : E is equal to
-
View Hint View Answer Discuss in Forum
A : B = 1 : 2 = 3 : 6
B : C = 3 : 4 = 6 : 8
C : D = 6 : 9 = 2 : 3 = 8 : 12
D : E = 12 : 16
∴ A : B : C : D : E
= 3 : 6 : 8 : 12 : 16Correct Option: D
A : B = 1 : 2 = 3 : 6
B : C = 3 : 4 = 6 : 8
C : D = 6 : 9 = 2 : 3 = 8 : 12
D : E = 12 : 16
∴ A : B : C : D : E
= 3 : 6 : 8 : 12 : 16
- In an alloy, the ratio of copper and zinc is 5 : 2. If 1.250 kg of zinc is mixed in 17 kg 500 g of
alloy, then the ratio of copper and zinc will be
-
View Hint View Answer Discuss in Forum
Weight of copper in 17kg 500 gm i.e. 17500 gm of alloy
= 5 × 17500 = 12500 gm 7
Weight of zinc = (17500 – 12500)
= 5000 gm
1250 gm of zinc is mixed in alloy.
∴ Total weight of zinc
= 1250 + 5000 = 6250 gm.
∴ Required ratio
= 12500 : 6250 = 2 : 1Correct Option: A
Weight of copper in 17kg 500 gm i.e. 17500 gm of alloy
= 5 × 17500 = 12500 gm 7
Weight of zinc = (17500 – 12500)
= 5000 gm
1250 gm of zinc is mixed in alloy.
∴ Total weight of zinc
= 1250 + 5000 = 6250 gm.
∴ Required ratio
= 12500 : 6250 = 2 : 1
- Alcohol and water in two vessels A and B are in the ratio 5 : 3 and 5 : 4 respectively. In what ratio, the liquids in both the vessels be mixed to obtain a new mixture in vessel C in the ratio 7 : 5 ?
-
View Hint View Answer Discuss in Forum
By Alligation Rule
∴ Ratio = 1 : 1 36 24
= 3 : 2Correct Option: B
By Alligation Rule
∴ Ratio = 1 : 1 36 24
= 3 : 2