Simplification
-
If nr − t n + 1 be a perfect square, then the values of t are: 4
-
View Hint View Answer Discuss in Forum
For nr − t n + 1 to be a perfect square, 4
r = 2 and t = ±1= n2 − n + 1 = n2 − 2.n 1 + 1 = n − 1 2 4 2 4 2 = n2 + n + 1 = n2 + 2.n. 1 + 1 = n + 1 2 4 2 4 2 Correct Option: D
For nr − t n + 1 to be a perfect square, 4
r = 2 and t = ±1= n2 − n + 1 = n2 − 2.n 1 + 1 = n − 1 2 4 2 4 2 = n2 + n + 1 = n2 + 2.n. 1 + 1 = n + 1 2 4 2 4 2
- Number of digits in the square root of 62478078 is:
-
View Hint View Answer Discuss in Forum
Number of digits in 62478078 = 8
∴ Number of digits in its square root = 4
⇒ √62478078 ≈ 7904
⇒ √62473216 = 7904Correct Option: A
Number of digits in 62478078 = 8
∴ Number of digits in its square root = 4
⇒ √62478078 ≈ 7904
⇒ √62473216 = 7904
-
The simplified value of √32 + √48 is √8 + √12
-
View Hint View Answer Discuss in Forum
Expression = √32 + √48 √8 + √12 = 4√2 + 4√3 = 4(√2 + √3) = 2 2√2 + 2√3 2(√2 + √3) Correct Option: B
Expression = √32 + √48 √8 + √12 = 4√2 + 4√3 = 4(√2 + √3) = 2 2√2 + 2√3 2(√2 + √3)
-
Simplify : √ 3 33 ÷ √ 9 1 × 2 √ 3 1 64 7 9
-
View Hint View Answer Discuss in Forum
Expression = √ 3 33 ÷ √ 9 1 × 2 √ 3 1 64 7 9 = √ 225 ÷ √ 64 × 2 √ 28 64 7 9 = √ 25 × 7 × 28 × 2 64 64 9 = 5 × 7 × 2 = 35 = 2 3 8 × 4 16 16 Correct Option: D
Expression = √ 3 33 ÷ √ 9 1 × 2 √ 3 1 64 7 9 = √ 225 ÷ √ 64 × 2 √ 28 64 7 9 = √ 25 × 7 × 28 × 2 64 64 9 = 5 × 7 × 2 = 35 = 2 3 8 × 4 16 16
-
What is the value of √24 + √216 ? √96
-
View Hint View Answer Discuss in Forum
Expression = √24 + √216 √96 = 2√6 + 6√6 = 8√6 = 2 4√6 4√6 Correct Option: C
Expression = √24 + √216 √96 = 2√6 + 6√6 = 8√6 = 2 4√6 4√6