-
The angle of elevation of the top of a tower from a point on the ground is 30° and moving 70 metres towards the tower it becomes 60°. The height of the tower is
-
- 10 metre
-
10 metre √3 - 10 √3 metre
- 35 √3 metre
Correct Option: D
AB = Height of tower = h metre (let)
CD = 70 metre
BD = x metre (let)
In ∆ABC,
tan30° = | BC |
= | = | |||
√3 | x + 70 |
⇒ √3h = x + 70
⇒ x = √3h – 70 ............(i)
In ∆ABD,
tan60° = | x |
⇒ √3 = | x |
⇒ x = | .........(ii) | √3 |
From equations (i) and (ii),
⇒ √3 - 70 = | √3 |
⇒ √3h - | = 70 | √3 |
= | = 70 | √3 |
⇒ 2h = 70 √3
⇒ h = | = 35 √3 metre | 2 |