-
The shadow of a tower standing on a level plane is found to be 30 metre longer when the Sun’s altitude changes from 60° to 45°. The height of the tower is
-
- 15 (3 + √3 ) metre
- 15 ( √3 + 1) metre
- 15 ( √3 – 1) metre
- 15 (3 – √3 ) metre
Correct Option: A
AB = Tower = h metre (let)
CD = 30 metre
BC = x metre (let)
From ∆ABC,
tan 60° = | BC |
⇒ √3 = | x |
⇒ h = √3x metre ...........(i)
From ∆ABD,
tan 45° = | BD |
⇒ 1 = | x + 30 |
⇒ h = x + 30
⇒ h= | + 30 | √3 |
⇒ √3h = h + 30 √3
⇒ √3h – h = 30 √3
⇒ h ( √3 - 1) = 30 √3
⇒ h = | = | |||
√3 - 1 | (√3 - 1)(√3 + 1) |
= | 3 - 1 |
= 15 √3 ( √3 +1)
= 15 (3 + √3 ) metre