Home » Aptitude » Trigonometry » Question
  1. The shadow of a tower standing on a level plane is found to be 30 metre longer when the Sun’s altitude changes from 60° to 45°. The height of the tower is
    1. 15 (3 + √3 ) metre
    2. 15 ( √3 + 1) metre
    3. 15 ( √3 – 1) metre
    4. 15 (3 – √3 ) metre
Correct Option: A


AB = Tower = h metre (let)
CD = 30 metre
BC = x metre (let)
From ∆ABC,

tan 60° =
AB
BC

⇒ √3 =
h
x

⇒ h = √3x metre ...........(i)
From ∆ABD,
tan 45° =
AB
BD

⇒ 1 =
h
x + 30

⇒ h = x + 30
⇒ h=
h
+ 30
3

⇒ √3h = h + 30 √3
⇒ √3h – h = 30 √3
⇒ h ( √3 - 1) = 30 √3
⇒ h =
30√3
=
30√3(√3 + 1)
3 - 1(√3 - 1)(√3 + 1)

=
30√3(√3 + 1)
3 - 1

= 15 √3 ( √3 +1)
= 15 (3 + √3 ) metre



Your comments will be displayed only after manual approval.