Simplification


  1. Solve [(238 + 131)2 + (238 - 131)2] / (238 x 238 + 131 x 131)











  1. View Hint View Answer Discuss in Forum

    Given expression
    = [(a + b)2 + (a - b)2] / [a2 + b2]
    = 2(a2 + b2) / (a2 + b2)

    Correct Option: B

    Given expression
    = [(a + b)2 + (a - b)2] / [a2 + b2]
    = 2(a2 + b2) / (a2 + b2)
    = 2
    where, a = 238, b = 131


  1. Solve [(999 + 588)2 - (999 - 588)2] / (999 x 588)











  1. View Hint View Answer Discuss in Forum

    Given expression
    = [(a + b )2 - (a - b )2] / ab

    Correct Option: D

    Given expression
    = [(a + b )2 - (a - b )2] / ab
    = 4ab/ab
    = 4
    where, a = 999, b = 588



  1. [0.5 x 0.5 x 0.5 + 0.2 x 0.2 x 0.2 + 0.3 x 0.3 x 0.3 - 3 x 0.5 x 0.3 x 0.2 ] / [0.5 x 0.5 + 0.2 x 0.2 + 0.3 x 0.3 - 0.5 x 0.2 - 0.2 x 0.3- 0.5 x 0.3] = ?









  1. View Hint View Answer Discuss in Forum

    Given expression
    [a3 + b3 + c3 - 3abc] / [a2 + b2 + c2 - ab - bc - ca]
    = a + b + c

    Correct Option: A

    Given expression
    [a3 + b3 + c3 - 3abc] / [a2 + b2 + c2 - ab - bc - ca]
    = a + b + c
    = 0.5 + 0.2 + 0.3
    where, a = 0.5, b = 0.2, c = 0.3


  1. [5 - [3/4 + {21/2 - (1/2 + 1/6 - 1/7)}]] / 2 = ?









  1. View Hint View Answer Discuss in Forum

    ? = [5 -[3/4 + {21/2 - (1/2 + 1/6 - 1/7)}]]/2
    = [5 - [3/4 + {5/2 -(1/2 + 7 - 6/42)}]]/2
    = [5 - [3/4 + {5/2 - (1/2 + 1/42)}]]/2
    = [5 - [3/4 + {5/2 - (21 + 1 /42)}]]/2

    Correct Option: A

    ? = [5 -[3/4 + {21/2 - (1/2 + 1/6 - 1/7)}]]/2
    = [5 - [3/4 + {5/2 -(1/2 + 7 - 6/42)}]]/2
    = [5 - [3/4 + {5/2 - (1/2 + 1/42)}]]/2
    = [5 - [3/4 + {5/2 - (21 + 1 /42)}]]/2
    = [5 - [3/4 + {5/2 - 22/42}]]/2
    = [5 - [3/4 + {105 - 22/42}]]/2
    = [5 - [3/4 + 83/42]] / 2
    = [5 - [63 + 166/84]]/2
    = (191/84)/2
    =191/168 = 123/168



  1. If a + b + c = 14 and a2 + b2 + c2 = 96, then (ab + bc + ca) = ?









  1. View Hint View Answer Discuss in Forum

    We know that,
    (a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ca )
    ⇒ 196 = 96 + 2(ab + bc + ca)
    ⇒ 2(ab + bc + ca) = 196 - 96 = 100

    Correct Option: C

    We know that,
    (a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ca )
    ⇒ 196 = 96 + 2(ab + bc + ca)
    ⇒ 2(ab + bc + ca) = 196 - 96 = 100
    ∴ (ab + bc + ca) = 100/2 = 50