Simplification
- Solve [(238 + 131)2 + (238 - 131)2] / (238 x 238 + 131 x 131)
-
View Hint View Answer Discuss in Forum
Given expression
= [(a + b)2 + (a - b)2] / [a2 + b2]
= 2(a2 + b2) / (a2 + b2)Correct Option: B
Given expression
= [(a + b)2 + (a - b)2] / [a2 + b2]
= 2(a2 + b2) / (a2 + b2)
= 2
where, a = 238, b = 131
- Solve [(999 + 588)2 - (999 - 588)2] / (999 x 588)
-
View Hint View Answer Discuss in Forum
Given expression
= [(a + b )2 - (a - b )2] / abCorrect Option: D
Given expression
= [(a + b )2 - (a - b )2] / ab
= 4ab/ab
= 4
where, a = 999, b = 588
- [0.5 x 0.5 x 0.5 + 0.2 x 0.2 x 0.2 + 0.3 x 0.3 x 0.3 - 3 x 0.5 x 0.3 x 0.2 ] / [0.5 x 0.5 + 0.2 x 0.2 + 0.3 x 0.3 - 0.5 x 0.2 - 0.2 x 0.3- 0.5 x 0.3] = ?
-
View Hint View Answer Discuss in Forum
Given expression
[a3 + b3 + c3 - 3abc] / [a2 + b2 + c2 - ab - bc - ca]
= a + b + cCorrect Option: A
Given expression
[a3 + b3 + c3 - 3abc] / [a2 + b2 + c2 - ab - bc - ca]
= a + b + c
= 0.5 + 0.2 + 0.3
where, a = 0.5, b = 0.2, c = 0.3
- [5 - [3/4 + {21/2 - (1/2 + 1/6 - 1/7)}]] / 2 = ?
-
View Hint View Answer Discuss in Forum
? = [5 -[3/4 + {21/2 - (1/2 + 1/6 - 1/7)}]]/2
= [5 - [3/4 + {5/2 -(1/2 + 7 - 6/42)}]]/2
= [5 - [3/4 + {5/2 - (1/2 + 1/42)}]]/2
= [5 - [3/4 + {5/2 - (21 + 1 /42)}]]/2Correct Option: A
? = [5 -[3/4 + {21/2 - (1/2 + 1/6 - 1/7)}]]/2
= [5 - [3/4 + {5/2 -(1/2 + 7 - 6/42)}]]/2
= [5 - [3/4 + {5/2 - (1/2 + 1/42)}]]/2
= [5 - [3/4 + {5/2 - (21 + 1 /42)}]]/2
= [5 - [3/4 + {5/2 - 22/42}]]/2
= [5 - [3/4 + {105 - 22/42}]]/2
= [5 - [3/4 + 83/42]] / 2
= [5 - [63 + 166/84]]/2
= (191/84)/2
=191/168 = 123/168
- If a + b + c = 14 and a2 + b2 + c2 = 96, then (ab + bc + ca) = ?
-
View Hint View Answer Discuss in Forum
We know that,
(a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ca )
⇒ 196 = 96 + 2(ab + bc + ca)
⇒ 2(ab + bc + ca) = 196 - 96 = 100Correct Option: C
We know that,
(a + b + c)2 = (a2 + b2 + c2) + 2(ab + bc + ca )
⇒ 196 = 96 + 2(ab + bc + ca)
⇒ 2(ab + bc + ca) = 196 - 96 = 100
∴ (ab + bc + ca) = 100/2 = 50