Algebra
-
If x = y = z, then (x + y + z)2 is equal to x2 + y2 + z2
-
View Hint View Answer Discuss in Forum
x = y = z
∴ Expression = (x + y + z)2 x2 + y2 + z2 Expression = (x + x + x)2 x2 + x2 + x2 Expression = 9x2 = 3 3x2
Correct Option: C
x = y = z
∴ Expression = (x + y + z)2 x2 + y2 + z2 Expression = (x + x + x)2 x2 + x2 + x2 Expression = 9x2 = 3 3x2
-
If x = y = z, then (x + y + z)2 is equal to x2 + y2 + z2
-
View Hint View Answer Discuss in Forum
x = y = z
∴ Expression = (x + y + z)2 x2 + y2 + z2 Expression = (x + x + x)2 x2 + x2 + x2 Expression = 9x2 = 3 3x2
Correct Option: C
x = y = z
∴ Expression = (x + y + z)2 x2 + y2 + z2 Expression = (x + x + x)2 x2 + x2 + x2 Expression = 9x2 = 3 3x2
-
If x = a (b – c), y = b (c – a), z = c (a – b), then the value of 
x 
3 + 
y 
3 + 
z 
3 is : a b c
-
View Hint View Answer Discuss in Forum
x = a (b – c)
⇒ x = b – c a
Similarly, y = b (c – a)⇒ y = c – a b and z = a – b c ∴ x + y + z = b – c + c – a + a – b = 0 a b c ∴ 
x 
3 + 
y 
3 + 
z 
3 = 3 × x × y × z = 3xyz a b c a b c abc
[If a + b + c = 0, a3 + b3 + c3 = 3 abc]
Correct Option: D
x = a (b – c)
⇒ x = b – c a
Similarly, y = b (c – a)⇒ y = c – a b and z = a – b c ∴ x + y + z = b – c + c – a + a – b = 0 a b c ∴ 
x 
3 + 
y 
3 + 
z 
3 = 3 × x × y × z = 3xyz a b c a b c abc
[If a + b + c = 0, a3 + b3 + c3 = 3 abc]
- If a2 + a + 1 = 0 , then the value of a5 + a4 + 1 is :
-
View Hint View Answer Discuss in Forum
a2 + a + 1 = 0
⇒ a2 + a + 1 = 0 a ⇒ a + 1 + 1 = 0 ....(i) a
Expression = a5 + a4 + 1 = a4(a + 1) + 1Expression = a4 
- 1 
+ 1 a
Expression = -a3 + 1 = 1 - a3
Expression = (1 – a) (1 + a + a2)
Expression = (1 – a) × 0 = 0Correct Option: C
a2 + a + 1 = 0
⇒ a2 + a + 1 = 0 a ⇒ a + 1 + 1 = 0 ....(i) a
Expression = a5 + a4 + 1 = a4(a + 1) + 1Expression = a4 
- 1 
+ 1 a
Expression = -a3 + 1 = 1 - a3
Expression = (1 – a) (1 + a + a2)
Expression = (1 – a) × 0 = 0
-
If x - 1 = 2 , then the value of x3 - 1 is : x x3
-
View Hint View Answer Discuss in Forum
x - 1 = 2 x
On cubing both sides,⇒ 
x + 1 
3 = 23 x ⇒ x3 - 1 - 3 
x - 1 
= 8 x3 x ⇒ x3 - 1 = 3 × 2 = 8 x3 ⇒ x3 - 1 = 8 + 6 = 14 x3
Correct Option: C
x - 1 = 2 x
On cubing both sides,⇒ 
x + 1 
3 = 23 x ⇒ x3 - 1 - 3 
x - 1 
= 8 x3 x ⇒ x3 - 1 = 3 × 2 = 8 x3 ⇒ x3 - 1 = 8 + 6 = 14 x3