-
cos²θ - 3cosθ + 2 = 1 is sin²θ
-
- 90°
- 30°
- 45°
- 60°
Correct Option: D
= 1 | |
sin²θ |
⇒ cos²θ – 3cosθ + 2 = sin²θ = 1 – cos²θ
⇒ 2cos²θ – 3cosθ + 1 = 0
⇒ 2cos²θ – 2cosθ – cosθ + 1 = 0
⇒ 2cosθ (cosθ – 1) – 1 (cosθ – 1) = 0
⇒ (2 cosθ – 1) (cosθ – 1) = 0
⇒ cosθ = | = 1 | |
2 |
as cosθ ≠ 1 as θ > 0
∴ cosq = cos 60°
⇒ θ = 60°