-
tan θ + cot θ is equal to 1 - cot θ 1 - tan θ
-
- 1 – tan θ – cot θ
- 1 + tanθ – cotθ
- 1 – tanθ + cotθ
- 1 + tanθ + cotθ
Correct Option: D
Expression
= | + | 1 - cot θ | 1 - tan θ |
= | + | {1 - (1 / tan θ) } | 1 - tan θ |
= | + | tan θ - 1 | tan θ(1 - tan θ) |
= | + | tan θ - 1 | tan θ(tan θ - 1) |
= | tan θ (tan θ - 1) |
= | tan θ (tan θ - 1) |
= | tan θ |
= tan θ + cot θ + 1