Home » Aptitude » Trigonometry » Question
  1. The angle of elevation of the top of a tower from a point A on the ground is 30°. On moving a distance of 20 metres towards the foot of the tower to a point B, the angle of elevation increases to 60°. The height of the tower in metres is
    1. 3
    2. 5 √3
    3. 10 √3
    4. 20 √3
Correct Option: C


Let, AB = height of tower = h metre
∠ ACB = 30°,
∠ADB = 60°
CD = 20 metre ; BC = x metre
In ∆ ABC,

tan30° =
AB
BC

1
=
h
3x

⇒ x = √3 h .... (i)
In ∆ ABD,
tan60° =
AB
BD

⇒ √3 =
h
x - 20

⇒ h = √3 x – 20 √3
= √33 h – 20 √3
⇒ h = 3h – 20 √3
⇒ 3h – h = 20 √3
⇒ 2h = 20 √3
⇒ h =
20√3
= 10√3 metre
2



Your comments will be displayed only after manual approval.