Quadratic Equation


Direction: In each of these questions, two equations and are given. You have to solve both the equations and give answer
( 1 ) if x < y
( 2 ) if x > y
( 3 ) if x = y
( 4 ) if x ≥ y
( 5 ) if x ≤ y or no relationship can be established between x and y.

  1. Ⅰ. x2 -24x + 144 = 0
    Ⅱ. y2 − 26y + 169 = 0











  1. View Hint View Answer Discuss in Forum

    As per the given above question , we have
    From equation Ⅰ. x2 - 24x + 144 = 0
    ⇒ x2 − 12x - 12x + 144 = 0

    From equation Ⅱ. y2 − 26y + 169 = 0
    ⇒ y2 − 13y − 13y + 169 = 0

    Correct Option: A

    As per the given above question , we have
    From equation Ⅰ. x2 - 24x + 144 = 0
    ⇒ x2 − 12x - 12x + 144 = 0
    ⇒ x(x − 12) − 12(x − 12) = 0
    ⇒ (x − 12)2 = 0
    ∴ x = 12
    From equation Ⅱ. y2 − 26y + 169 = 0
    ⇒ y2 − 13y − 13y + 169 = 0
    ⇒ y(y − 13) − 13(y − 13) = 0
    ⇒ (y − 13)2 = 0
    ∴ y = 13
    Hence, required answer will be x < y .


  1. Ⅰ. 2x2 + 3x – 20 = 0
    Ⅱ. 2y2 + 19y + 44 = 0











  1. View Hint View Answer Discuss in Forum

    According to question ,
    From equation Ⅰ. 2x2 + 3x– 20 = 0
    ⇒ 2x2 + 8x − 5x − 20 = 0
    ⇒ 2x(x + 4) − 5(x + 4) = 0

    From equation Ⅱ. 2y2 + 19y + 44 = 0
    ⇒ 2y2 + 11y + 8y + 44 = 0
    ⇒ 2y(2y + 11) + 4(2y + 11) = 0

    Correct Option: D

    According to question ,
    From equation Ⅰ. 2x2 + 3x– 20 = 0
    ⇒ 2x2 + 8x − 5x − 20 = 0
    ⇒ 2x(x + 4) − 5(x + 4) = 0
    ⇒ (2x − 5)(x + 4) = 0

    ∴ x =
    5
    , - 4
    2

    From equation Ⅱ. 2y2 + 19y + 44 = 0
    ⇒ 2y2 + 11y + 8y + 44 = 0
    ⇒ 2y(2y + 11) + 4(2y + 11) = 0
    ⇒ (y + 4)(2y + 11) = 0
    ∴ y = - 4, -
    5
    2
    Hence, x ≥ y is correct answer .



  1. Ⅰ. 10x2 − 7x + 1 = 0
    Ⅱ. 35y2 -12y + 1 = 0











  1. View Hint View Answer Discuss in Forum

    From the above given equations , we have
    Ⅰ. 10x2 − 7x + 1 = 0
    ⇒ 10x2 − 5x − 2x + 1 = 0
    ⇒ 5x(2x − 1) − 1(2x − 1) = 0

    Ⅱ. 35y2 - 12y + 1 = 0
    ⇒ 35y2 − 7y + 5y + 1 = 0
    ⇒ 7y(5y − 1) − 1(5y − 1) = 0

    Correct Option: D

    From the above given equations , we have
    Ⅰ. 10x2 − 7x + 1 = 0
    ⇒ 10x2 − 5x − 2x + 1 = 0
    ⇒ 5x(2x − 1) − 1(2x − 1) = 0
    ⇒ (5x − 1)(2x − 1) = 0

    ∴ x =
    1
    ,
    1
    5
    2

    Ⅱ. 35y2 - 12y + 1 = 0
    ⇒ 35y2 − 7y + 5y + 1 = 0
    ⇒ 7y(5y − 1) − 1(5y − 1) = 0
    ⇒ (7y − 1)(5y − 1) = 0
    ∴ y =
    1
    ,
    1
    7
    5
    Hence, required answer is x ≥ y .


  1. Ⅰ. 6x2 + 77x + 121 = 0
    Ⅱ. y2 + 9y − 22 = 0











  1. View Hint View Answer Discuss in Forum

    From the given above equations , we have
    Ⅰ. 6x2 + 77x + 121 = 0
    ⇒ 6x2 + 66x + 11x + 121 = 0

    Ⅱ. y2 + 9y − 22 = 0
    ⇒ y2 + 11y − 2y − 22 = 0

    Correct Option: E

    From the given above equations , we have
    Ⅰ. 6x2 + 77x + 121 = 0
    ⇒ 6x2 + 66x + 11x + 121 = 0
    ⇒ 6x(x + 11) + 11(x + 11) = 0
    ⇒ (6x + 11)(x + 11) = 0

    ∴ x = -
    11
    , - 11
    6

    Ⅱ. y2 + 9y − 22 = 0
    ⇒ y2 + 11y − 2y − 22 = 0
    ⇒ y(y + 11) - 2(y + 11)
    ⇒ (y − 2)(y + 11) = 0
    ⇒ y = 2, –11
    Hence, no relationship can be established between x and y.



  1. Ⅰ. x2 − 6x = 7
    Ⅱ. 2y2 + 13y + 15 = 0











  1. View Hint View Answer Discuss in Forum

    As per the given above question , we have
    From equation Ⅰ.
    x2 − 6x = 7
    ⇒ x2 − 6x - 7 = 0
    ⇒ x2 − 7x + x − 7 = 0

    From equation Ⅱ.
    2y2 + 13y + 15 = 0
    2y2 + 10y + 3y + 15 = 0
    ⇒ 2y(y + 5) + 3(y + 5) = 0

    Correct Option: B

    As per the given above question , we have
    From equation Ⅰ. x2 − 6x = 7
    ⇒ x2 − 6x - 7 = 0
    ⇒ x2 − 7x + x − 7 = 0
    ⇒ x(x − 7) + 1(x − 7) = 0
    ⇒ (x + 1)(x − 7) = 0
    ⇒ x = -1, 7
    From equation Ⅱ. 2y2 + 13y + 15 = 0
    2y2 + 10y + 3y + 15 = 0
    ⇒ 2y(y + 5) + 3(y + 5) = 0
    ⇒ (2y + 3)(y + 5) = 0

    ∴ y = -
    3
    , - 5
    2

    Hence, x > y is correct answer .