Logarithm
- If log10 2 =0.301, then the value of log10(50) is ?
-
View Hint View Answer Discuss in Forum
log1050 = log10[(50 x 2) / 2]
= log 100 - log 2
= log10102 - log 2Correct Option: C
log1050 = log10[(50 x 2) / 2]
= log 100 - log 2
= log10102 - log 2
= 2 - 0.301
= 1.699
- Find the value of log (a2 / bc) + log (b2 / ac) + log (c2 / ab) ?
-
View Hint View Answer Discuss in Forum
Given Exp. = log (a2 / bc) + log (b2 / ac) + log (c2 / ab)
= log [(a2 x b2 x c2) / (a2 x b2 x c2)]Correct Option: A
Given Exp. = log (a2 / bc) + log (b2 / ac) + log (c2 / ab)
= log [(a2 x b2 x c2) / (a2 x b2 x c2)]
=log 1
=0
- Find the value of log 8 + log 1/8 ?
-
View Hint View Answer Discuss in Forum
log 8 + log (1/8) = log (8 x1/8) = log 1 = 0
Correct Option: A
Given expression = log 8 + log (1/8)
= log 8 x (1/8)
= log 1
= 0
- If log 2 = 0.3010, then the number of digits in 264 is ?
-
View Hint View Answer Discuss in Forum
Required answer = [64 log10 2] + 1
Correct Option: C
Required answer = [64 log10 2] + 1
= [ 64 x 0.3010 ] + 1
= 19.264 + 1
= 19 + 1
= 20
- Find the value of log x + log (1/x) ?
-
View Hint View Answer Discuss in Forum
Given expression = log x + log1/x
= log x + log 1 - log xCorrect Option: A
Given expression = log x + log1/x
= log x + log 1 - log x
= log 1
= 0