-
For the transfer function
G(s) = 5(s + 4) s (s + 0.25)(s2 + 4s + 25)
The values of the constant gain term and the highest corner frequency of t he Bode plot respectively are
-
- 3.2, 5.0
- 16.0, 4.0
- 3.2, 4.0
- 16.0, 5.0
Correct Option: A
| G(s) = | ||
| s(s + 0.25)(s2 + 4s + 25) |
| G(jω) = | ||
| jω(jω + 0.25)[(jω)2 + 4jω + 25] |
| = | 5 × 4 × 4 | ![]() | + 1 | ![]() | ||||||||
| 4 | ||||||||||||
| jω(4jω + 1) | ![]() | ![]() | ![]() | 2 | + | jω + 1 | ![]() | ![]() | × 25 | |||
| 5 | 25 | |||||||||||
| = | ![]() | + 1 | ![]() | |||||||||
| 4 | ||||||||||||
| 25 | jω(4jω + 1) | ![]() | ![]() | ![]() | 2 | + | + 1 | ![]() | ![]() | |||
| 5 | 25 | |||||||||||
| Constant gain term = | = 3.2 | |
| 25 |
Corner frequencies are ω = 4, ω = 0.25, ω = 5
Then highest corner frequency ω = 5 rad/sec.



