Home » Aptitude » Trigonometry » Question
  1. Find the value of tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ).
    1. tan 10θ
    2. tan8θ
    3. tan 12θ
    4. 1
Correct Option: B

tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ 1 +
1
1 +
1
1 +
1
cos2θcos4θcos8θ

tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ
cos2θ + 1
cos4θ + 1
cos8θ + 1
cos2θcos4θcos8θ

tan θ(1 + sec2θ)(1 + sec 4θ) (1 + sec8θ) = tanθ
2cos2θ
2cos2
2cos2
cos2θcos4θcos8θ

[ ∴ 1 + cos2θ = 2cos2θ ]
Required answer = 8 .
tanθ.cos2θ .cos2θ.cos4θ
cos8θ

Required answer = 4 .
2sinθcosθ.cos2θ.cos4θ
cos8θ

Required answer = 4 .
sin2θ.cos2θ.cos4θ
cos8θ

Required answer = 2 .
2sin2θ.cos2θ.cos4θ
cos8θ

Required answer =
2sin4θ.cos4θ
cos8θ

Required answer =
sin8θ
= tan8θ
cos8θ



Your comments will be displayed only after manual approval.